PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling and Physico-Chemical Determinations
2.3. Ecotoxicity
2.4. Data Processing
3. Results and Discussion
3.1. PM10 Road Dust Loadings and Emission Factors
3.2. PAH Content
3.3. Ecotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneve, Switzerland, 2016. [Google Scholar]
- HEI. State of Global Air 2020; Health Effects Institute: Boston, MA, USA, 2020. [Google Scholar]
- Sharma, S.; Chandra, M.; Kota, S.H. Health Effects Associated with PM2.5: A Systematic Review. Curr. Pollut. Rep. 2020, 6, 345–367. [Google Scholar] [CrossRef]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The Effect of Air Pollution on Deaths, Disease Burden, and Life Expectancy across China and Its Provinces, 1990–2017: An Analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; Jessiman, B.; et al. Living near Major Roads and the Incidence of Dementia, Parkinson’s Disease, and Multiple Sclerosis: A Population-Based Cohort Study. Lancet 2017, 389, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Attademo, L.; Bernardini, F. Air Pollution and Urbanicity: Common Risk Factors for Dementia and Schizophrenia? Lancet Planet. Health 2017, 1, e90–e91. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2016. [Google Scholar]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansion of City Scale, Traffic Modes, Traffic Congestion, and Air Pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- Pio, C.; Rienda, I.C.; Nunes, T.; Gonçalves, C.; Tchepel, O.; Pina, N.K.; Rodrigues, J.; Lucarelli, F.; Alves, C.A. Impact of Biomass Burning and Non-Exhaust Vehicle Emissions on PM10 Levels in a Mid-Size Non-Industrial Western Iberian City. Atmos. Environ. 2022, 289, 119293. [Google Scholar] [CrossRef]
- EEA. Air Quality in Europe—2020 Report; Agency, E.E., Ed.; EEA: Copenhagen, Denmark, 2020; ISBN 978-92-9480-292-7. [Google Scholar]
- Casquero-Vera, J.A.; Lyamani, H.; Titos, G.; Minguillón, M.C.; Dada, L.; Alastuey, A.; Querol, X.; Petäjä, T.; Olmo, F.J.; Alados-Arboledas, L. Quantifying Traffic, Biomass Burning and Secondary Source Contributions to Atmospheric Particle Number Concentrations at Urban and Suburban Sites. Sci. Total Environ. 2021, 768, 145282. [Google Scholar] [CrossRef]
- Casotti Rienda, I.; Alves, C.A. Road Dust Resuspension: A Review. Atmos. Res. 2021, 261, 105740. [Google Scholar] [CrossRef]
- Rexeis, M.; Hausberger, S. Trend of Vehicle Emission Levels until 2020—Prognosis Based on Current Vehicle Measurements and Future Emission Legislation. Atmos. Environ. 2009, 43, 4689–4698. [Google Scholar] [CrossRef]
- OECD. Non-Exhaust Particulate Emissions from Road Transport; OECD: Paris, France, 2020; ISBN 9789264452442. [Google Scholar]
- Galatioto, F.; Masey, N.; Murrells, T.; Hamilton, S.; Pommier, M. Review of Road Dust Resuspension Modelling Approaches and Comparisons Analysis for a UK Case Study. Atmosphere 2022, 13, 1403. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Weinbruch, S.; Worringen, A.; Ebert, M.; Scheuvens, D.; Kandler, K.; Pfeffer, U.; Bruckmann, P. A Quantitative Estimation of the Exhaust, Abrasion and Resuspension Components of Particulate Traffic Emissions Using Electron Microscopy. Atmos. Environ. 2014, 99, 175–182. [Google Scholar] [CrossRef]
- Amato, F.; Schaap, M.; Denier van der Gon, H.A.C.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X. Effect of Rain Events on the Mobility of Road Dust Load in Two Dutch and Spanish Roads. Atmos. Environ. 2012, 62, 352–358. [Google Scholar] [CrossRef]
- Denby, B.R.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Omstedt, G. A Coupled Road Dust and Surface Moisture Model to Predict Non-Exhaust Road Traffic Induced Particle Emissions (NORTRIP). Part 1: Road Dust Loading and Suspension Modelling. Atmos. Environ. 2013, 77, 283–300. [Google Scholar] [CrossRef]
- Karanasiou, A.; Moreno, T.; Amato, F.; Lumbreras, J.; Narros, A.; Borge, R.; Tobías, A.; Boldo, E.; Linares, C.; Pey, J.; et al. Road Dust Contribution to PM Levels—Evaluation of the Effectiveness of Street Washing Activities by Means of Positive Matrix Factorization. Atmos. Environ. 2011, 45, 2193–2201. [Google Scholar] [CrossRef]
- Kupiainen, K.; Ritola, R.; Stojiljkovic, A.; Pirjola, L.; Malinen, A.; Niemi, J. Contribution of Mineral Dust Sources to Street Side Ambient and Suspension PM10 Samples. Atmos. Environ. 2016, 147, 178–189. [Google Scholar] [CrossRef]
- Bezberdaya, L.; Kosheleva, N.; Chernitsova, O.; Lychagin, M.; Kasimov, N. Pollution Level, Partition and Spatial Distribution of Benzo(a)Pyrene in Urban Soils, Road Dust and Their PM10 Fraction of Health-Resorts (Alushta, Yalta) and Industrial (Sebastopol) Cities of Crimea. Water 2022, 14, 561. [Google Scholar] [CrossRef]
- Candeias, C.; Vicente, E.; Tomé, M.; Rocha, F.; Ávila, P.; Alves, C. Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks. Int. J. Environ. Res. Public Health 2020, 17, 1563. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, Á.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Heavy Metal Concentrations in Particle Size Fractions from Street Dust of Murcia (Spain) as the Basis for Risk Assessment. J. Environ. Monit. 2011, 13, 3087–3096. [Google Scholar] [CrossRef]
- Richards, J.; Reif, R.; Luo, Y.; Gan, J. Distribution of Pesticides in Dust Particles in Urban Environments. Environ. Pollut. 2016, 214, 290–298. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Kosheleva, N.E.; Vlasov, D.V.; Nabelkina, K.S.; Ryzhov, A.V. Physicochemical Properties of Road Dust in Moscow. Geogr. Environ. Sustain. 2019, 12, 96–113. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Vlasov, D.V.; Kosheleva, N.E. Enrichment of Road Dust Particles and Adjacent Environments with Metals and Metalloids in Eastern Moscow. Urban Clim. 2020, 32, 100638. [Google Scholar] [CrossRef]
- Deng, C.; Huang, J.; Qi, Y.; Chen, D.; Huang, W. Distribution Patterns of Rubber Tire-Related Chemicals with Particle Size in Road and Indoor Parking Lot Dust. Sci. Total Environ. 2022, 844, 157144. [Google Scholar] [CrossRef] [PubMed]
- Kosheleva, N.E.; Vlasov, D.V.; Timofeev, I.V.; Samsonov, T.E.; Kasimov, N.S. Benzo[a]Pyrene in Moscow Road Dust: Pollution Levels and Health Risks. Environ. Geochem. Health 2022. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Shi, Y.; Huang, J.; Deng, C.; Tang, S.; Liu, X.; Chen, D. Occurrence of Substituted p-Phenylenediamine Antioxidants in Dusts. Environ. Sci. Technol. Lett. 2021, 8, 381–385. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and Chemical Patterns of PM10 in Road Dust Deposited in Urban Environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical Profiling of PM10 from Urban Road Dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Vicente, A.M.P.; Rienda, I.C.; Tomé, M.; Querol, X.; Amato, F. Loadings, Chemical Patterns and Risks of Inhalable Road Dust Particles in an Atlantic City in the North of Portugal. Sci. Total Environ. 2020, 737, 139596. [Google Scholar] [CrossRef]
- Cunha-Lopes, I.; Alves, C.A.; Casotti Rienda, I.; Faria, T.; Lucarelli, F.; Querol, X.; Amato, F.; Almeida, S.M. Characterisation of Non-Exhaust Emissions from Road Traffic in Lisbon. Atmos. Environ. 2022, 286, 119221. [Google Scholar] [CrossRef]
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.A.G.; Bonnaire, N.; et al. Traffic Induced Particle Resuspension in Paris: Emission Factors and Source Contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; Sanchez de la Campa, A.; Artíñano, B.; Matos, M. OC/EC Ratio Observations in Europe: Re-Thinking the Approach for Apportionment between Primary and Secondary Organic Carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Polidori, A.; Turpin, B.J.; Davidson, C.I.; Rodenburg, L.A.; Maimone, F. Organic PM2.5: Fractionation by Polarity, FTIR Spectroscopy, and OM/OC Ratio for the Pittsburgh Aerosol. Aerosol Sci. Technol. 2008, 42, 233–246. [Google Scholar] [CrossRef]
- Chow, J.C.; Lowenthal, D.H.; Chen, L.-W.A.; Wang, X.; Watson, J.G. Mass Reconstruction Methods for PM2.5: A Review. Air Qual. Atmos. Health 2015, 8, 243–263. [Google Scholar] [CrossRef] [PubMed]
- Vouitsis, E.; Ntziachristos, L.; Pistikopoulos, P.; Samaras, Z.; Chrysikou, L.; Samara, C.; Papadimitriou, C.; Samaras, P.; Sakellaropoulos, G. An Investigation on the Physical, Chemical and Ecotoxicological Characteristics of Particulate Matter Emitted from Light-Duty Vehicles. Environ. Pollut. 2009, 157, 2320–2327. [Google Scholar] [CrossRef]
- Hubai, K.; Kováts, N.; Sainnokhoi, T.-A.; Teke, G. Accumulation Pattern of Polycyclic Aromatic Hydrocarbons Using Plantago Lanceolata L. as Passive Biomonitor. Environ. Sci. Pollut. Res. 2022, 29, 7300–7311. [Google Scholar] [CrossRef] [PubMed]
- Millán-Martínez, M.; Sánchez-Rodas, D.; Sánchez de la Campa, A.M.; de la Rosa, J. Contribution of Anthropogenic and Natural Sources in PM10 during North African Dust Events in Southern Europe. Environ. Pollut. 2021, 290, 118065. [Google Scholar] [CrossRef]
- Querol, X. PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [Google Scholar] [CrossRef]
- Alves, C.; Evtyugina, M.; Vicente, E.; Vicente, A.; Casotti Rienda, I.; de la Campa, A.S.; Tomé, M.; Duarte, I. PM2.5 Chemical Composition and Health Risks by Inhalation near a Chemical Complex. J. Environ. Sci. 2023, 124, 860–874. [Google Scholar] [CrossRef]
- Kováts, N.; Ács, A.; Kovács, A.; Ferincz, Á.; Turóczi, B.; Gelencsér, A. Direct Contact Test for Estimating the Ecotoxicity of Aerosol Samples. Environ. Toxicol. Pharmacol. 2012, 33, 284–287. [Google Scholar] [CrossRef]
- Turóczi, B.; Hoffer, A.; Tóth, Á.; Kováts, N.; Ács, A.; Ferincz, A.; Kovács, A.; Gelencsér, A. Comparative Assessment of Ecotoxicity of Urban Aerosol. Atmos. Chem. Phys. 2012, 12, 7365–7370. [Google Scholar] [CrossRef] [Green Version]
- Kováts, N.; Hubai, K.; Sainnokhoi, T.A.; Hoffer, A.; Teke, G. Ecotoxicity Testing of Airborne Particulate Matter—Comparison of Sample Preparation Techniques for the Vibrio Fischeri Assay. Environ. Geochem. Health 2021, 43, 4367–4378. [Google Scholar] [CrossRef] [PubMed]
- Kováts, N.; Horváth, E. Bioluminescence-Based Assays for Assessing Eco- and Genotoxicity of Airborne Emissions. Luminescence 2016, 31, 918–923. [Google Scholar] [CrossRef]
- Aammi, S.; Karaca, F.; Petek, M. A Toxicological and Genotoxicological Indexing Study of Ambient Aerosols (PM2.5-10) Using in Vitro Bioassays. Chemosphere 2017, 174, 490–498. [Google Scholar] [CrossRef]
- Romano, S.; Perrone, M.R.; Becagli, S.; Pietrogrande, M.C.; Russo, M.; Caricato, R.; Lionetto, M.G. Ecotoxicity, Genotoxicity, and Oxidative Potential Tests of Atmospheric PM10 Particles. Atmos. Environ. 2020, 221, 117085. [Google Scholar] [CrossRef]
- Vicente, E.D.; Figueiredo, D.; Gonçalves, C.; Lopes, I.; Oliveira, H.; Kováts, N.; Pinheiro, T.; Alves, C.A. In Vitro Toxicity of Indoor and Outdoor PM10 from Residential Wood Combustion. Sci. Total Environ. 2021, 782, 146820. [Google Scholar] [CrossRef] [PubMed]
- Evagelopoulos, V.; Zoras, S.; Samaras, P.; Triantafyllou, A.; Albanis, T.; Kassomenos, P. Toxicity of Fine and Coarse Atmospheric Particles Using Vibrio Fischeri. In Proceedings of the 2nd International Conference on Environmental Management, Engineering, Planning and Economics CEMEPE & SECOTOX Conference, Myconos Island, Greece, 21–26 June 2009. [Google Scholar]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensperger, U.; Querol, X. Sources and Variability of Inhalable Road Dust Particles in Three European Cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Wedepohl, H.K. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Chou, C.M.; Chang, Y.M.; Lin, W.Y.; Tseng, C.H.; Chen, L. Evaluation of Street Sweeping and Washing to Reduce Ambient PM10. Int. J. Environ. Pollut. 2007, 31, 431. [Google Scholar] [CrossRef]
- Amato, F.; Querol, X.; Johansson, C.; Nagl, C.; Alastuey, A. A Review on the Effectiveness of Street Sweeping, Washing and Dust Suppressants as Urban PM Control Methods. Sci. Total Environ. 2010, 408, 3070–3084. [Google Scholar] [CrossRef]
- Vanegas, S.; Trejos, E.M.; Aristizábal, B.H.; Pereira, G.M.; Hernández, J.M.; Murillo, J.H.; Ramírez, O.; Amato, F.; Silva, L.F.O.; Rojas, N.Y.; et al. Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. Atmosphere 2021, 12, 1109. [Google Scholar] [CrossRef]
- Amato, F.; Bedogni, M.; Padoan, E.; Querol, X.; Ealo, M.; Rivas, I. Characterization of Road Dust Emissions in Milan: Impact of Vehicle Fleet Speed. Aerosol Air Qual. Res. 2017, 17, 2438–2449. [Google Scholar] [CrossRef]
- Padoan, E.; Ajmone-Marsan, F.; Querol, X.; Amato, F. An Empirical Model to Predict Road Dust Emissions Based on Pavement and Traffic Characteristics. Environ. Pollut. 2018, 237, 713–720. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; Contreras González, J.; Querol, X. Impact of Traffic Intensity and Pavement Aggregate Size on Road Dust Particles Loading. Atmos. Environ. 2013, 77, 711–717. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.S.H.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 Emission Factors for Non-Exhaust Particles Generated by Road Traffic in an Urban Street Canyon and along a Freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Roy, S.; Gupta, S.K.; Prakash, J.; Habib, G.; Kumar, P. A Global Perspective of the Current State of Heavy Metal Contamination in Road Dust. Environ. Sci. Pollut. Res. 2022, 29, 33230–33251. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Liu, J.; Aini, G.; Gong, Y. A Comparative Study of the Grain-Size Distribution of Surface Dust and Stormwater Runoff Quality on Typical Urban Roads and Roofs in Beijing, China. Environ. Sci. Pollut. Res. 2016, 23, 2693–2704. [Google Scholar] [CrossRef] [PubMed]
- Zannoni, D.; Valotto, G.; Visin, F.; Rampazzo, G. Sources and Distribution of Tracer Elements in Road Dust: The Venice Mainland Case of Study. J. Geochem. Explor. 2016, 166, 64–72. [Google Scholar] [CrossRef]
- Grigoratos, T.; Samara, C.; Voutsa, D.; Manoli, E.; Kouras, A. Chemical Composition and Mass Closure of Ambient Coarse Particles at Traffic and Urban-Background Sites in Thessaloniki, Greece. Environ. Sci. Pollut. Res. 2014, 21, 7708–7722. [Google Scholar] [CrossRef] [PubMed]
- Terzi, E.; Argyropoulos, G.; Bougatioti, A.; Mihalopoulos, N.; Nikolaou, K.; Samara, C. Chemical Composition and Mass Closure of Ambient PM10 at Urban Sites. Atmos. Environ. 2010, 44, 2231–2239. [Google Scholar] [CrossRef]
- Vicente, E.D.; Evtyugina, M.; Vicente, A.M.; Calvo, A.I.; Oduber, F.; Blanco-Alegre, C.; Castro, A.; Fraile, R.; Nunes, T.; Lucarelli, F.; et al. Impact of Ironing on Indoor Particle Levels and Composition. Build. Environ. 2021, 192, 107636. [Google Scholar] [CrossRef]
- Perrino, C.; Catrambone, M.; Farao, C.; Canepari, S. Assessing the Contribution of Water to the Mass Closure of PM10. Atmos. Environ. 2016, 140, 555–564. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, A.M.P.; Calvo, A.I.; Baumgardner, D.; Amato, F.; Querol, X.; Pio, C.; Gustafsson, M. Physical and Chemical Properties of Non-Exhaust Particles Generated from Wear between Pavements and Tyres. Atmos. Environ. 2020, 224, 117252. [Google Scholar] [CrossRef]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and Chemical Characterization of Tire-Related Particles: Comparison of Particles Generated Using Different Methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.Y.M.J.; Abas, M.R.B.; Rahman, N.A.; Tahir, N.M.; Rushdi, A.I.; Simoneit, B.R.T. Levels and Distributions of Organic Source Tracers in Air and Roadside Dust Particles of Kuala Lumpur, Malaysia. Environ. Geol. 2007, 52, 1485–1500. [Google Scholar] [CrossRef]
- Bourliva, A.; Christophoridis, C.; Papadopoulou, L.; Giouri, K.; Papadopoulos, A.; Mitsika, E.; Fytianos, K. Characterization, Heavy Metal Content and Health Risk Assessment of Urban Road Dusts from the Historic Center of the City of Thessaloniki, Greece. Environ. Geochem. Health 2017, 39, 611–634. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors Influencing PM10 Emissions from Road Pavement Wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Bardelli, F.; Cattaruzza, E.; Gonella, F.; Rampazzo, G.; Valotto, G. Characterization of Road Dust Collected in Traforo Del San Bernardo Highway Tunnel: Fe and Mn Speciation. Atmos. Environ. 2011, 45, 6459–6468. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy Metals from Non-Exhaust Vehicle Emissions in Urban and Motorway Road Dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake Wear Particle Emissions: A Review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory Testing of Airborne Brake Wear Particle Emissions Using a Dynamometer System under Urban City Driving Cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of Brake Wear Particles and Derivation of a Quantitative Tracer for Brake Dust at a Major Road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Łapiński, W. Assessment of Metallic Content, Pollution, and Sources of Road Dust in the City of Białystok (Poland). Aerosol Air Qual. Res. 2020, 20, 2507–2518. [Google Scholar] [CrossRef]
- Adamiec, E. Chemical Fractionation and Mobility of Traffic-Related Elements in Road Environments. Environ. Geochem. Health 2017, 39, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.A.; Faz, A.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Partitioning of Heavy Metals over Different Chemical Fraction in Street Dust of Murcia (Spain) as a Basis for Risk Assessment. J. Geochem. Explor. 2014, 144, 298–305. [Google Scholar] [CrossRef]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of Heavy Metals in Road Dust along an Urban-Rural Gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Klöckner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and Road Wear Particles in Road Environment—Quantification and Assessment of Particle Dynamics by Zn Determination after Density Separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, R.T. Bismuth. Encycl. Br. Available online: https://www.britannica.com/science/bismuth (accessed on 9 November 2022).
- Vlasov, D.; Ramírez, O.; Luhar, A. Road Dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management. Atmosphere 2022, 13, 607. [Google Scholar] [CrossRef]
- Tian, S.; Liang, T.; Li, K.; Wang, L. Source and Path Identification of Metals Pollution in a Mining Area by PMF and Rare Earth Element Patterns in Road Dust. Sci. Total Environ. 2018, 633, 958–966. [Google Scholar] [CrossRef]
- Querol, X.; Pérez, N.; Reche, C.; Ealo, M.; Ripoll, A.; Tur, J.; Pandolfi, M.; Pey, J.; Salvador, P.; Moreno, T.; et al. African Dust and Air Quality over Spain: Is It Only Dust That Matters? Sci. Total Environ. 2019, 686, 737–752. [Google Scholar] [CrossRef]
- Das, S.; Miller, B.V.; Prospero, J.M.; Gaston, C.J.; Royer, H.M.; Blades, E.; Sealy, P.; Chellam, S. Coupling Sr–Nd–Hf Isotope Ratios and Elemental Analysis to Accurately Quantify North African Dust Contributions to PM2.5 in a Complex Urban Atmosphere by Reducing Mineral Dust Collinearity. Environ. Sci. Technol. 2022, 56, 7729–7740. [Google Scholar] [CrossRef] [PubMed]
- Djingova, R.; Kovacheva, P.; Wagner, G.; Markert, B. Distribution of Platinum Group Elements and Other Traffic Related Elements among Different Plants along Some Highways in Germany. Sci. Total Environ. 2003, 308, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Lyubomirova, V.; Djingova, R.; van Elteren, J.T. Fractionation of Traffic-Emitted Ce, La and Zr in Road Dusts. J. Environ. Monit. 2011, 13, 1823. [Google Scholar] [CrossRef] [PubMed]
- Bourliva, A.; Papadopoulou, L.; Aidona, E. Rare Elements (Zr, Nb, La, Ce and Hf) in Traffic Emitted Ferrimagnetic Particles from Road Dusts. Bull. Geol. Soc. Greece 2017, 50, 2100. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Hassan Pour, Z.; Zereini, F. Platinum Group Element and Cerium Concentrations in Roadside Environments in Toronto, Canada. Chemosphere 2016, 145, 61–67. [Google Scholar] [CrossRef]
- Grass, F.; Westphal, G.P.; Lemmel, H.; Sterba, J. Rhodium in Car Exhaust Tips by Total Automatic Activation Analysis. J. Radioanal. Nucl. Chem. 2007, 271, 503–506. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Hagendorfer, H.; Hohenwallner, D.; Hanus-Illnar, A.; Riss, A. Analyses of Platinum Group Elements in Mosses as Indicators of Road Traffic Emissions in Austria. Atmos. Environ. 2006, 40, 7720–7732. [Google Scholar] [CrossRef]
- Pant, P.; Baker, S.J.; Shukla, A.; Maikawa, C.; Godri Pollitt, K.J.; Harrison, R.M. The PM10 Fraction of Road Dust in the UK and India: Characterization, Source Profiles and Oxidative Potential. Sci. Total Environ. 2015, 530–531, 445–452. [Google Scholar] [CrossRef]
- Ramírez, O.; Sánchez de la Campa, A.M.; Amato, F.; Moreno, T.; Silva, L.F.; de la Rosa, J.D. Physicochemical Characterization and Sources of the Thoracic Fraction of Road Dust in a Latin American Megacity. Sci. Total Environ. 2019, 652, 434–446. [Google Scholar] [CrossRef]
- Dong, S.; Ochoa Gonzalez, R.; Harrison, R.M.; Green, D.; North, R.; Fowler, G.; Weiss, D. Isotopic Signatures Suggest Important Contributions from Recycled Gasoline, Road Dust and Non-Exhaust Traffic Sources for Copper, Zinc and Lead in PM10 in London, United Kingdom. Atmos. Environ. 2017, 165, 88–98. [Google Scholar] [CrossRef]
- Hjortenkrans, D.S.T.; Bergbäck, B.G.; Häggerud, A.V. Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 2007, 41, 5224–5230. [Google Scholar] [CrossRef] [PubMed]
- Hulskotte, J.H.J.; Roskam, G.D.; Denier van der Gon, H.A.C. Elemental Composition of Current Automotive Braking Materials and Derived Air Emission Factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Liu, H.; Ren, L. Determination of Road Dust Loadings and Chemical Characteristics Using Resuspension. Environ. Monit. Assess. 2012, 184, 1693–1709. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Levesque, C.; Rasmussen, P.E. Characterizing the Sources, Concentrations and Resuspension Potential of Metals and Metalloids in the Thoracic Fraction of Urban Road Dust. Sci. Total Environ. 2021, 786, 147467. [Google Scholar] [CrossRef]
- Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B. Resuspension of Particulate Matter and PAHs from Street Dust. Atmos. Environ. 2011, 45, 310–317. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Netto, A.D.P.; Krauss, T.M.; Cunha, I.F.; Rego, E.C.P. PAHs in SD:Polycyclic Aromatic Hydrocarbons Levels in Street Dust in the Central Area of Niterói City, RJ, Brazil. Water. Air. Soil Pollut. 2006, 176, 57–67. [Google Scholar] [CrossRef]
- Wang, W.; Huang, M.-J.; Kang, Y.; Wang, H.S.; Leung, A.O.W.; Cheung, K.C.; Wong, M.H. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Surface Dust of Guangzhou, China: Status, Sources and Human Health Risk Assessment. Sci. Total Environ. 2011, 409, 4519–4527. [Google Scholar] [CrossRef]
- Alves, C.; Nunes, T.; Vicente, A.; Gonçalves, C.; Evtyugina, M.; Marques, T.; Pio, C.; Bate-Epey, F. Speciation of Organic Compounds in Aerosols from Urban Background Sites in the Winter Season. Atmos. Res. 2014, 150, 57–68. [Google Scholar] [CrossRef]
- Kováts, N.; Ács, A.; Ferincz, Á.; Kovács, A.; Horváth, E.; Kakasi, B.; Jancsek-Turóczi, B.; Gelencsér, A. Ecotoxicity and Genotoxicity Assessment of Exhaust Particulates from Diesel-Powered Buses. Environ. Monit. Assess. 2013, 185, 8707–8713. [Google Scholar] [CrossRef]
- El-Alawi, Y.S.; McConkey, B.J.; George Dixon, D.; Greenberg, B.M. Measurement of Short- and Long-Term Toxicity of Polycyclic Aromatic Hydrocarbons Using Luminescent Bacteria. Ecotoxicol. Environ. Saf. 2002, 51, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Villaume, J.; Cullen, D.C.; Kim, B.C.; Gu, M.B. Monitoring and Classification of PAH Toxicity Using an Immobilized Bioluminescent Bacteria. Biosens. Bioelectron. 2003, 18, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Roig, N.; Sierra, J.; Rovira, J.; Schuhmacher, M.; Domingo, J.L.; Nadal, M. In Vitro Tests to Assess Toxic Effects of Airborne PM10 Samples. Correlation with Metals and Chlorinated Dioxins and Furans. Sci. Total Environ. 2013, 443, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Vicente, E.D.; Evtyugina, M.; Vicente, A.M.P.; Sainnokhoi, T.A.; Kováts, N. Cooking Activities in a Domestic Kitchen: Chemical and Toxicological Profiling of Emissions. Sci. Total Environ. 2021, 772, 145412. [Google Scholar] [CrossRef]
Carbon Fraction | P1 (Campus UA) | P2BC (Indoor Multi-Storey) | P2AF (Indoor Multi-Storey) | P3 (Underground) | ||||
---|---|---|---|---|---|---|---|---|
OC (%)/(mg g−1 PM10) | - | - | 23.8 ± 6.4 | 132.7 ± 3.8 | 9.0 | 90 | 17.7 ± 2.8 | 176.9 ± 27.7 |
EC (%)/(mg g−1 PM10) | - | - | 13.3 ± 167 | 41.6 ± 3.8 | 5.7 | 57.1 | 9.3 ± 1.4 | 93.4 ± 13 |
TC (OC + EC) (%)/(mg g−1 PM10) | 7.0 ± 2.7 | 69.6 ± 26.9 | 30.1 ± 7.6 | 186.7 ± 34.3 | 15 | 147.1 | 27 ± 1.6 | 270.3 ± 15.6 |
Carbonates (%)/(mg g−1 PM10) | 10 ± 3.3 | 100.1 ± 32.6 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casotti Rienda, I.; Alves, C.A.; Nunes, T.; Soares, M.; Amato, F.; Sánchez de la Campa, A.; Kováts, N.; Hubai, K.; Teke, G. PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity. Atmosphere 2023, 14, 305. https://doi.org/10.3390/atmos14020305
Casotti Rienda I, Alves CA, Nunes T, Soares M, Amato F, Sánchez de la Campa A, Kováts N, Hubai K, Teke G. PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity. Atmosphere. 2023; 14(2):305. https://doi.org/10.3390/atmos14020305
Chicago/Turabian StyleCasotti Rienda, Ismael, Célia A. Alves, Teresa Nunes, Marlene Soares, Fulvio Amato, Ana Sánchez de la Campa, Nóra Kováts, Katalin Hubai, and Gábor Teke. 2023. "PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity" Atmosphere 14, no. 2: 305. https://doi.org/10.3390/atmos14020305
APA StyleCasotti Rienda, I., Alves, C. A., Nunes, T., Soares, M., Amato, F., Sánchez de la Campa, A., Kováts, N., Hubai, K., & Teke, G. (2023). PM10 Resuspension of Road Dust in Different Types of Parking Lots: Emissions, Chemical Characterisation and Ecotoxicity. Atmosphere, 14(2), 305. https://doi.org/10.3390/atmos14020305