Variability in the Occurrence of Tropical and Extratropical Cyclones in the Atlantic Ocean and Its Climatic and Hydrological Determinants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temporal Variability and Trends in Occurrence of TC and ETC
3.2. Relationship between Macroscale Circulation Patterns (ENSO/NAO) and TC/ETC Occurrence
3.3. Influence of Global SST on TC/ETC Occurrence
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, Y.-K.; Schubert, S.D.; Kovach, R.; Molod, A.M.; Pawson, S. The roles of climate change and climate variability in the 2017 Atlantic hurricane season. Sci. Rep. 2018, 8, 16172. [Google Scholar] [CrossRef]
- Mann, M.E.; Emanuel, K.A. Atlantic hurricane trends linked to climate change. Eos Trans. Am. Geophys. Union 2006, 87, 233–241. [Google Scholar] [CrossRef]
- Mudd, L.; Wang, Y.; Letchford, C.; Rosowsky, D. Assessing climate change impact on the US East Coast hurricane hazard: Temperature, frequency, and track. Nat. Hazards Rev. 2014, 15, 04014001. [Google Scholar] [CrossRef]
- Strauss, B.H.; Orton, P.M.; Bittermann, K.; Buchanan, M.K.; Gilford, D.M.; Kopp, R.E.; Kulp, S.; Massey, C.; de Moel, H.; Vinogradov, S. Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change. Nat. Commun. 2021, 12, 1–9. [Google Scholar]
- Frame, D.J.; Wehner, M.F.; Noy, I.; Rosier, S.M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 2020, 160, 271–281. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Cheng, L.; Jacobs, P.; Zhang, Y.; Fasullo, J. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future 2018, 6, 730–744. [Google Scholar] [CrossRef]
- Risser, M.D.; Wehner, M.F. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett. 2017, 44, 12–457. [Google Scholar] [CrossRef]
- Keellings, D.; Hernández Ayala, J.J. Extreme rainfall associated with Hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophys. Res. Lett. 2019, 46, 2964–2973. [Google Scholar] [CrossRef]
- Reed, K.A.; Stansfield, A.M.; Wehner, M.F.; Zarzycki, C.M. Forecasted attribution of the human influence on Hurricane Florence. Sci. Adv. 2020, 6, eaaw9253. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Vecchi, G.A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 2014, 509, 349–352. [Google Scholar] [CrossRef]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarini, G.; Vecchi, G.A. Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Clim. 2013, 26, 3231–3240. [Google Scholar] [CrossRef]
- Zhao, M.; Held, I.M.; Lin, S.-J.; Vecchi, G.A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Clim. 2009, 22, 6653–6678. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Delworth, T.L.; Murakami, H.; Underwood, S.D.; Wittenberg, A.T.; Zeng, F.; Zhang, W.; Baldwin, J.W.; Bhatia, K.T.; Cooke, W. Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn. 2019, 53, 5999–6033. [Google Scholar] [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T. Projected increases in hurricane damage in the United States: The role of climate change and coastal development. Ecol. Econ. 2017, 138, 186–198. [Google Scholar] [CrossRef]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J.; Hall, T.M.; Lee, C.-Y.; Tippett, M.K.; Wing, A.A. Human influence on tropical cyclone intensity. Science 2016, 353, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res. Atmos. 2002, 107, ACL-26. [Google Scholar] [CrossRef]
- Garner, S. The relationship between hurricane potential intensity and CAPE. J. Atmos. Sci. 2015, 72, 141–163. [Google Scholar] [CrossRef]
- Camp, J.P.; Montgomery, M.T. Hurricane maximum intensity: Past and present. Mon. Weather Rev. 2001, 129, 1704–1717. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Gillies, R.R. Observed change in Sahel rainfall, circulations, African easterly waves, and Atlantic hurricanes since 1979. Int. J. Geophys. 2011, 2011, 259529. [Google Scholar] [CrossRef]
- Saunders, M.A.; Chandler, R.E.; Merchant, C.J.; Roberts, F.P. Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophys. Res. Lett. 2000, 27, 1147–1150. [Google Scholar] [CrossRef]
- Smith, S.R.; Brolley, J.; O’Brien, J.J.; Tartaglione, C.A. ENSO’s impact on regional US hurricane activity. J. Clim. 2007, 20, 1404–1414. [Google Scholar] [CrossRef]
- Elsner, J.B.; Jagger, T.H. Prediction models for annual US hurricane counts. J. Clim. 2006, 19, 2935–2952. [Google Scholar] [CrossRef]
- Vimont, D.J.; Kossin, J.P. The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett. 2007, 34, L07709. [Google Scholar] [CrossRef]
- Klotzbach, P.; Gray, W.; Fogarty, C. Active Atlantic hurricane era at its end? Nat. Geosci. 2015, 8, 737–738. [Google Scholar] [CrossRef]
- Curtis, S. The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Clim. Dyn. 2008, 30, 343–351. [Google Scholar] [CrossRef]
- Bjerknes, J. Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys. Publik. 1922, 3, 1–18. [Google Scholar]
- Charney, J.G.; Eliassen, A. On the growth of the hurricane depression. J. Atmos. Sci. 1964, 21, 68–75. [Google Scholar] [CrossRef]
- Jones, S.C.; Harr, P.A.; Abraham, J.; Bosart, L.F.; Bowyer, P.J.; Evans, J.L.; Hanley, D.E.; Hanstrum, B.N.; Hart, R.E.; Lalaurette, F. The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Weather Forecast. 2003, 18, 1052–1092. [Google Scholar] [CrossRef]
- Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L. Tropical and extratropical cyclone damages under climate change. Clim. Change 2014, 127, 227–241. [Google Scholar] [CrossRef]
- Catto, J.L. Extratropical cyclone classification and its use in climate studies. Rev. Geophys. 2016, 54, 486–520. [Google Scholar] [CrossRef]
- Tamarin, T.; Kaspi, Y. The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci. 2016, 73, 1687–1707. [Google Scholar] [CrossRef]
- Evans, C.; Wood, K.M.; Aberson, S.D.; Archambault, H.M.; Milrad, S.M.; Bosart, L.F.; Corbosiero, K.L.; Davis, C.A.; Pinto, J.R.D.; Doyle, J. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Weather Rev. 2017, 145, 4317–4344. [Google Scholar] [CrossRef]
- Kofron, D.E.; Ritchie, E.A.; Tyo, J.S. Determination of a consistent time for the extratropical transition of tropical cyclones. Part I: Examination of existing methods for finding “ET time”. Mon. Weather Rev. 2010, 138, 4328–4343. [Google Scholar] [CrossRef]
- Ritchie, E.A.; Elsberry, R.L. Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical cyclones. Mon. Weather Rev. 2007, 135, 862–876. [Google Scholar] [CrossRef]
- Liu, M.; Vecchi, G.A.; Smith, J.A.; Murakami, H. The present-day simulation and twenty-first-century projection of the climatology of extratropical transition in the North Atlantic. J. Clim. 2017, 30, 2739–2756. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic oscillation. Geophys. Monogr. -Am. Geophys. Union 2003, 134, 1–36. [Google Scholar]
- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 2006, 33, L12704. [Google Scholar] [CrossRef]
- Ishii, M.; Shouji, A.; Sugimoto, S.; Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 865–879. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Landsea, C.; Zhang, W.; Villarini, G.; Knutson, T. Changes in Atlantic major hurricane frequency since the late-19th century. Nat. Commun. 2021, 12, 4054. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.K.M.; Guo, Y. Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett. 2007, 34, L14801. [Google Scholar] [CrossRef]
- Chan, D.; Vecchi, G.A.; Yang, W.; Huybers, P. Improved simulation of 19th-and 20th-century North Atlantic hurricane frequency after correcting historical sea surface temperatures. Sci. Adv. 2021, 7, eabg6931. [Google Scholar] [CrossRef]
- Palmen, E. On the formation and structure of tropical hurricanes. Geophysica 1948, 3, 26–38. [Google Scholar]
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nuñez, A.M.; Gray, W.M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef]
- Loehle, C.; Staehling, E. Hurricane trend detection. Nat. Hazards 2020, 104, 1345–1357. [Google Scholar] [CrossRef]
- Landsea, C.W.; Nicholls, N.; Gray, W.M.; Avila, L.A. Downward trends in the frequency of intense at Atlantic Hurricanes during the past five decades. Geophys. Res. Lett. 1996, 23, 1697–1700. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Zhao, M.; Wang, H.; Villarini, G.; Rosati, A.; Kumar, A.; Held, I.M.; Gudgel, R. Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Weather Rev. 2011, 139, 1070–1082. [Google Scholar] [CrossRef]
- Schreck III, C.J.; Klotzbach, P.J.; Bell, M.M. Optimal climate normals for North Atlantic hurricane activity. Geophys. Res. Lett. 2021, 48, e2021GL092864. [Google Scholar] [CrossRef]
- Elsner, J.B.; Bossak, B.H.; Niu, X. Secular changes to the ENSO-US hurricane relationship. Geophys. Res. Lett. 2001, 28, 4123–4126. [Google Scholar] [CrossRef]
- Tang, B.H.; Neelin, J.D. ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett. 2004, 31, L24204. [Google Scholar] [CrossRef]
- Tartaglione, C.A.; Smith, S.R.; O’Brien, J.J. ENSO impact on hurricane landfall probabilities for the Caribbean. J. Clim. 2003, 16, 2925–2931. [Google Scholar] [CrossRef]
- Elsner, J.B.; Jagger, T.; Niu, X. Changes in the rates of North Atlantic major hurricane activity during the 20th century. Geophys. Res. Lett. 2000, 27, 1743–1746. [Google Scholar] [CrossRef]
- Dijkstra, H.A.; te Raa, L.; Schmeits, M.; Gerrits, J. On the physics of the Atlantic multidecadal oscillation. Ocean Dyn. 2006, 56, 36–50. [Google Scholar] [CrossRef]
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 2006, 33, L17706. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef]
- Browning, K.A. The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2004, 130, 375–399. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
Variable | Index | Correlation Coefficient |
---|---|---|
Number of TC | SOI | 0.31 |
NAO AMO | −0.34 0.65 | |
Extent (northern) of TC | SOI | 0.18 |
NAO AMO | −0.17 −0.14 | |
Number of ETC | SOI | 0.10 |
NAO AMO | −0.27 0.60 | |
Extent (northern) of ETC | SOI | 0.18 |
NAO AMO | −0.10 0.46 |
Month of Index Measurement | Index | Correlation with TC | Correlation with ETC |
January | SOI | 0.11 | −0.06 |
NAO AMO | −0.07 0.42 ** | −0.13 0.30 * | |
February | SOI | −0.20 | −0.27 * |
NAO AMO | −0.04 0.50 *** | 0.01 0.36 ** | |
March | SOI | 0.14 | 0.00 |
NAO AMO | −0.35 ** 0.51 *** | −0.19 0.35 ** | |
April | SOI | 0.06 | −0.09 |
NAO AMO | −0.08 0.57 *** | −0.09 0.37 ** | |
May | SOI | 0.13 | −0.13 |
NAO AMO | −0.30 * 0.56 *** | −0.36 ** 0.38 ** | |
June | SOI | −0.05 | −0.31 * |
NAO AMO | −0.11 0.63 *** | −0.11 0.42 ** | |
July | SOI | 0.36 ** | 0.09 |
NAO AMO | 0.20 0.55 *** | 0.06 0.44 *** | |
August | SOI | 0.24 | 0.01 |
NAO AMO | −0.03 0.64 *** | −0.20 0.56 *** | |
September | SOI | 0.30 * | −0.06 |
NAO AMO | 0.22 0.64 *** | 0.33 * 0.46 *** | |
October | SOI | 0.51 *** | 0.20 |
NAO AMO | 0.08 0.51 *** | 0.00 0.30 * | |
November | SOI | 0.39 ** | 0.03 |
NAO AMO | −0.20 0.58 *** | −0.02 0.34 * | |
December | SOI | 0.48 *** | 0.28 * |
NAO AMO | −0.23 0.58 *** | −0.08 0.38 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczapiński, A.; Bednorz, E.; Czernecki, B. Variability in the Occurrence of Tropical and Extratropical Cyclones in the Atlantic Ocean and Its Climatic and Hydrological Determinants. Atmosphere 2023, 14, 312. https://doi.org/10.3390/atmos14020312
Szczapiński A, Bednorz E, Czernecki B. Variability in the Occurrence of Tropical and Extratropical Cyclones in the Atlantic Ocean and Its Climatic and Hydrological Determinants. Atmosphere. 2023; 14(2):312. https://doi.org/10.3390/atmos14020312
Chicago/Turabian StyleSzczapiński, Adam, Ewa Bednorz, and Bartosz Czernecki. 2023. "Variability in the Occurrence of Tropical and Extratropical Cyclones in the Atlantic Ocean and Its Climatic and Hydrological Determinants" Atmosphere 14, no. 2: 312. https://doi.org/10.3390/atmos14020312
APA StyleSzczapiński, A., Bednorz, E., & Czernecki, B. (2023). Variability in the Occurrence of Tropical and Extratropical Cyclones in the Atlantic Ocean and Its Climatic and Hydrological Determinants. Atmosphere, 14(2), 312. https://doi.org/10.3390/atmos14020312