A Study of Two High Intensity Fires across Corsican Shrubland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.1.1. Characterization of the Vegetation and Weather Conditions
2.1.2. Drones and Vision Technology for ROS Evaluation
2.1.3. Heat Flux Measurements
2.2. Numerical Model
2.3. Evaluation Methods of Fire Behavior Parameters
2.3.1. ROS
2.3.2. Fireline Intensity
2.3.3. Heat Fluxes
3. Results
3.1. ROS
3.2. Fireline Intensity
3.3. Flame Geometry and Fire Front Shape
3.4. Fire Front Impact
4. Discussion
4.1. Fire Front Behavior: ROS and Fireline Intensity
4.2. Fire Intensity
4.3. Fire Front and Flame Geometry
4.4. Fire Front Impact
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Cp | Fuel specific heat (J/kg/K) |
e | Fuel bed depth (m) |
g | Earth acceleration (m/s2) |
IB | Byram fireline intensity (W/m) |
Byram fireline intensity evaluated experimentally (W/m) | |
Byram fireline intensity evaluated numerically (W/m) | |
FMC | Fuel moisture content (mass of water/mass of dry fuel) |
ROS | Rate of spread (m/s) |
s | Surface area to volume ratio (m−1) |
T0 | Ambient temperature (K) |
T | Gas mixture temperature (K) |
Ta | Target temperature (K) |
Ux | Wind speed at x meters above the ground (m/s) |
ΔHc | Fuel yield heat (J/kg) |
wa | Weight of fuel consumed in the active flaming front (kg/m2) |
Vegetation mass loss rate (kg/m.s) | |
hconv | Convective heat transfer coefficient (W/m2.K) |
k | Thermal conductivity of gas mixture (W/m.K) |
B | Stephan-Boltzmann constant (W/m2.K4) |
Pr | Prandtl number of gas mixture |
Re | Reynold number of fuel particles |
Lc | Characteristic length (m) |
Qconv, Qrad | Convective and radiative heat fluxes received by the target (W/m2) |
, , , , | Enthalpy of water vaporization, pyrolysis, and charcoal, CO and soot combustion (kJ/kg) |
, , , , | Rates of water vaporization, dry material pyrolysis, and charcoal, CO and soot combustion (kg/s) |
Greek | |
ρv | Fuel particle density (kg/m3) |
β | Volume fraction of the solid phase |
σ | Solid fuel load (kg/m2) |
γ | Flame inclination angle |
References
- European Science & Technology Advisory Group. Evolving Risk of Wildfires in Europe—The Changing Nature of Wildfire Risk Calls for a Shift in Policy Focus from Suppression to Prevention; UN Office for Disaster Risk Reduction: Brussels, Belgium, 2020. [Google Scholar]
- European Commission, Directorate-General for Environment; Nuijten, D.; Onida, M.; Lelouvier, R. Land-Based Wildfire Prevention: Principles and Experiences on Managing Landscapes, Forests and Woodlands for Safety and Resilience in Europe; Nuijten, D., Onida, M., Lelouvier, R., Eds.; Publications Office of the European Union: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2779/695867 (accessed on 15 December 2022).
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Mariotti, A.; Pan, Y.; Zeng, N.; Alessandri, A. Long-Term Climate Change in the Mediterranean Region in the Midst of Decadal Variability. Clim. Dyn. 2015, 44, 1437–1456. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top Ten European Heatwaves since 1950 and Their Occurrence in the Coming Decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Duane, A.; Castellnou, M.; Brotons, L. Towards a Comprehensive Look at Global Drivers of Novel Extreme Wildfire Events. Clim. Chang. 2021, 165, 43. [Google Scholar] [CrossRef]
- Viegas, D.X.; Rossa, C.; Caballero, D.; Pita, L.P.C.; Palheiro, P. Analysis of Accidents in 2005 Fires in Portugal and Spain. For. Ecol. Manag. 2006, 234, S141. [Google Scholar] [CrossRef]
- Molina-Terrén, D.M.; Xanthopoulos, G.; Diakakis, M.; Ribeiro, L.; Caballero, D.; Delogu, G.M.; Viegas, D.X.; Silva, C.A.; Cardil, A. Analysis of Forest Fire Fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int. J. Wildland Fire 2019, 28, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shen, F.; Sun, X. 2019–2020 Australian Bushfire Air Particulate Pollution and Impact on the South Pacific Ocean. Sci. Rep. 2021, 11, 12288. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E.; Gough, M.; Lazarz, M.; Rogan, J.; Syphard, A.D.; Keeley, J.E.; Gough, M.; Lazarz, M.; Rogan, J. What Makes Wildfires Destructive in California? Fire 2022, 5, 133. [Google Scholar] [CrossRef]
- Les Incendies Ont Causé Des Émissions de CO2 Records. Available online: https://reporterre.net/Les-incendies-ont-cause-des-emissions-de-CO2-records (accessed on 17 February 2023).
- Balbi, J.-H.; Chatelon, F.J.; Rossi, J.L.; Simeoni, A.; Viegas, D.X.; Rossa, C. Modelling of Eruptive Fire Occurrence and Behaviour. J. Environ. Sci. Eng. B 2014, 3, 115–132. [Google Scholar]
- Hirsch, K.; Martell, D. A Review of Initial Attack Fire Crew Productivity and Effectiveness. Int. J. Wildland Fire 1996, 6, 199–215. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.E. Fire Behaviour as a Factor in Forest and Rural Fire Suppression; Forest Research Bulletin No. 197; Forest and Rural Fire Scientific and Technical Series; Report No. 5; Forest Research, Rotorua, in association with the National Rural Fire Authority: Wellington, New Zealand, 2000. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service, Research Paper INT-115; Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972. [Google Scholar]
- Balbi, J.-H.; Rossi, J.-L.; Marcelli, T.; Chatelon, F.-J. Physical Modeling of Surface Fire Under Nonparallel Wind and Slope Conditions. Combust. Sci. Technol. 2010, 182, 922–939. [Google Scholar] [CrossRef]
- Weise, D.R.; Koo, E.; Zhou, X.; Mahalingam, S.; Morandini, F.; Balbi, J.H. Fire Spread in Chaparral—A Comparison of Laboratory Data and Model Predictions in Burning Live Fuels. Int. J. Wildland Fire 2016, 25, 980–994. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, W.R.R.; Catchpole, E.A.A.; Butler, B.W.W.; Rothermel, R.C.; Latham, D.J.; Morris, G.A.; Latham, D.J. Rate of Spread of Free-Burning Fires in Woody Fuels in a Wind Tunnel. Combust. Sci. Technol. 1998, 131, 1–37. [Google Scholar] [CrossRef]
- Rothermel, R.C.; Anderson, H.E. Fire Spread Characteristics Determined in the Laboratory; USDA Forest Service, Research Paper INT-30; Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1966. [Google Scholar]
- Fang, J.B. An Investigation of the Effect of Controlled Wind on the Rate of Fire Spread; Department of Chemical Engineering, University of New Brunswick: Fredericton, NB, Canada, 1969. [Google Scholar]
- Liu, N.; Wu, J.; Chen, H.; Zhang, L.; Deng, Z.; Satoh, K.; Viegas, D.X.; Raposo, J.R. Upslope Spread of a Linear Flame Front over a Pine Needle Fuel Bed: The Role of Convection Cooling. Proc. Combust. Inst. 2015, 35, 2691–2698. [Google Scholar] [CrossRef]
- Awad, C.; Rossi, J.-L.; Marcelli, T.; Morvan, D.; Morandini, F.; Chatelon, F.-J.; Balbi, J.-H. Test of a Moisture Extinction Model under Conditions of No Slope and Calm Wind. In Proceedings of the 8th International Fire ecology and Management Congress, Tucson, AZ, USA, 18–22 November 2019. [Google Scholar]
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. The Influence Of Fuel, Weather And Fire Shape Variables On Fire-Spread In Grasslands. Int. J. Wildland Fire 1993, 3, 31–44. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Hurley, R.J.; Plucinski, M.P. Got to Burn to Learn: The Effect of Fuel Load on Grassland Fire Behaviour and Its Management Implications. Int. J. Wildland Fire 2018, 27, 727–741. [Google Scholar] [CrossRef]
- Bilgili, E.; Saglam, B. Fire Behavior in Maquis Fuels in Turkey. For. Ecol. Manag. 2003, 184, 201–207. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A Generic, Empirical-Based Model for Predicting Rate of Fire Spread in Shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Antonio Vega, J.; Fernandes, P.; Cuiñas, P.; Fontúrbel, M.T.; Pérez, J.R.; Loureiro, C. Fire Spread Analysis of Early Summer Field Experiments in Shrubland Fuel Types of Northwestern Iberia. For. Ecol. Manag. 2006, 234, S102. [Google Scholar] [CrossRef]
- Morandini, F.; Silvani, X.; Rossi, L.; Santoni, P.A.; Simeoni, A.; Balbi, J.-H.; Louis Rossi, J.; Marcelli, T. Fire Spread Experiment across Mediterranean Shrub: Influence of Wind on Flame Front Properties. Fire Saf. J. 2006, 41, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Silvani, X.; Morandini, F. Fire Spread Experiments in the Field: Temperature and Heat Fluxes Measurements. Fire Saf. J. 2009, 44, 279–285. [Google Scholar] [CrossRef]
- Butler, B.; Teske, C.; Jimenez, D.; O’Brien, J.; Sopko, P.; Wold, C.; Vosburgh, M.; Hornsby, B.; Loudermilk, E. Observations of Energy Transport and Rate of Spreads from Low-Intensity Fires in Longleaf Pine Habitat-RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Raposo, J.; Viegas, D.X.; Xie, X.; Almeida, M.; Naian, L. A Dvances in F Orest F Ire R Esearch. In Advances in Forest Fire Research; Viegas, D.X., Ed.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 88–94. ISBN 9789892608846. [Google Scholar]
- Viegas, D.X. Advances in Forest Fire Research 2018; Coimbra University Press: Coimbra, Portugal, 2018. [Google Scholar] [CrossRef]
- Byram, G.M. Forest Fire Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Fayad, J.; Rossi, L.; Frangieh, N.; Awad, C.; Accary, G.; Chatelon, F.-J.; Morandini, F.; Marcelli, T.; Cancellieri, V.; Cancellieri, D.; et al. Numerical Study of an Experimental High-Intensity Prescribed Fire across Corsican Genista Salzmannii Vegetation. Fire Saf. J. 2022, 131, 103600. [Google Scholar] [CrossRef]
- Rahib, Y.; Leroy-Cancellieri, V.; Cancellieri, D.; Awad, C.; Rossi, J.-L. Comprehensive Characterization of Pyrolysis and Combustion of Genista Salzmannii Needles (GSN) for Fire Hazard Analysis. In Proceedings of the Advances in Forest Fire Research 2022; Viegas, D.X., Ribeiro, L.M., Eds.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2022; pp. 1430–1436. [Google Scholar]
- Morvan, D.; Accary, G.; Meradji, S.; Frangieh, N.; Bessonov, O. A 3D Physical Model to Study the Behavior of Vegetation Fires at Laboratory Scale. Fire Saf. J. 2018, 101, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Morvan, D.; Méradji, S.; Accary, G. Physical Modelling of Fire Spread in Grasslands. Fire Saf. J. 2009, 44, 50–61. [Google Scholar] [CrossRef]
- Morvan, D.; Dupuy, J.L. Modeling the Propagation of a Wildfire through a Mediterranean Shrub Using a Multiphase Formulation. Combust. Flame 2004, 138, 199–210. [Google Scholar] [CrossRef]
- Awad, C.; Frangieh, N.; Marcelli, T.; Accary, G.; Morvan, D.; Meradji, S.; Chatelon, F.-J.; Rossi, J.-L. Numerical Study of the Moisture Content Threshold under Prescribed Burning Conditions. Fire Saf. J. 2021, 122, 103324. [Google Scholar] [CrossRef]
- Grishin, A.M. Mathematical Modeling of Forest Fires and New Methods of Fighting Them; Albini, F.A., Ed.; Publishing House of the Tomsk University: Tomsk, Russia, 1996. [Google Scholar]
- Favre, A.; Kavasznay, L.S.G.; Dumas, R.; Gaviglio, J.; Coantic, M. La Turbulence En Mécanique Des Fluides: Bases Théoriques et Expérimentales, Méthodes Statistiques; Gauthier-Villars: Paris, France, 1977. [Google Scholar]
- Cox, G. Combustion Fundamentals of Fire; Academic Press: London, UK, 1995; ISBN 9780121942304. [Google Scholar]
- Gavrilov, K. Numerical Modeling of Atmospheric Boundary Layer Flow over Forest Canopy; Université de la Méditerranée–Aix Marseille II: Marseille, France, 2011. [Google Scholar]
- Kee, R.J.; Rupley, F.M.; Miller, J.A. The Chemkin Thermodynamic Data Base; Sandia National Lab. (SNL-CA): Livermore, CA, USA, 1990. [Google Scholar]
- Magnussen, B.F.; Hjertager, B.H. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. In Symposium (International) on Combustion; Elsevier: Cambridge, MA, USA, 1977; Volume 16, pp. 719–729. [Google Scholar]
- Syed, K.J.; Stewart, C.D.; Moss, J.B. Modelling Soot Formation and Thermal Radiation in Buoyant Turbulent Diffusion Flames. In Symposium (International) on Combustion; Elsevier: Cambridge, MA, USA, 1991; Volume 23, pp. 1533–1541. [Google Scholar]
- Nagle, J.; Strickland-Constable, R.F. Oxidation of Carbon between 1000–2000 °C. In Proceedings of the Fifth Conference on Carbon; Elsevier: Cambridge, MA, USA, 1962; pp. 154–164. [Google Scholar]
- Frangieh, N.; Morvan, D.; Meradji, S.; Accary, G.; Bessonov, O. Numerical Simulation of Grassland Fires Behavior Using an Implicit Physical Multiphase Model. Fire Saf. J. 2018, 102, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Frangieh, N.; Accary, G.; Morvan, D.; Méradji, S.; Bessonov, O. Wildfires Front Dynamics: 3D Structures and Intensity at Small and Large Scales. Combust. Flame 2020, 211, 54–67. [Google Scholar] [CrossRef]
- Frangieh, N.; Accary, G.; Rossi, J.-L.; Morvan, D.; Meradji, S.; Marcelli, T.; Chatelon, F.-J. Fuelbreak Effectiveness against Wind-Driven and Plume-Dominated Fires: A 3D Numerical Study. Fire Saf. J. 2021, 124, 103383. [Google Scholar] [CrossRef]
- Morvan, D. Physical Phenomena and Length Scales Governing the Behaviour of Wildfires: A Case for Physical Modelling. Fire Technol. 2011, 47, 437–460. [Google Scholar] [CrossRef]
- Morvan, D.; Meradji, S.; Mell, W. Interaction between Head Fire and Backfire in Grasslands. Fire Saf. J. 2013, 58, 195–203. [Google Scholar] [CrossRef]
- Morvan, D. Numerical Study of the Effect of Fuel Moisture Content (FMC) upon the Propagation of a Surface Fire on a Flat Terrain. Fire Saf. J. 2013, 58, 121–131. [Google Scholar] [CrossRef]
- Dupuy, J.L.; Maréchal, J.; Portier, D.; Valette, J.C. The Effects of Slope and Fuel Bed Width on Laboratory Fire Behaviour. Int. J. Wildland Fire 2011, 20, 272–288. [Google Scholar] [CrossRef]
- Rossi, J.L.; Simeoni, A.; Moretti, B.; Leroy-Cancellieri, V. An Analytical Model Based on Radiative Heating for the Determination of Safety Distances for Wildland Fires. Fire Saf. J. 2011, 46, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Rossi, J.-L.; Chetehouna, K.; Collin, A.; Moretti, B.; Balbi, J.-H. Simplified Flame Models and Prediction of the Thermal Radiation Emitted by a Flame Front in an Outdoor Fire. Combust. Sci. Technol. 2010, 182, 1457–1477. [Google Scholar] [CrossRef] [Green Version]
- Zárate, L.; Arnaldos, J.; Casal, J. Establishing Safety Distances for Wildland Fires. Fire Saf. J. 2008, 43, 565–575. [Google Scholar] [CrossRef]
- Page, W.G.; Butler, B.W. An Empirically Based Approach to Defining Wildland Firefighter Safety and Survival Zone Separation Distances. Int. J. Wildland Fire 2017, 26, 655–667. [Google Scholar] [CrossRef]
- Rossi, J.-L.; Morvan, D.; Simeoni, A.; Marcelli, T.; Chatelon, F.-J. Fuelbreaks: A Part of Wildfire Prevention. In Global Assessment Report 2019; United Nations Office for Disaster Risk Reduction (UNDRR): Geneva, Switzerland, 2019; p. 25. [Google Scholar]
- Nelson, R.M.; Butler, B.W.; Weise, D.R. Entrainment Regimes and Flame Characteristics of Wildland Fires. Int. J. Wildland Fire 2012, 21, 127–140. [Google Scholar] [CrossRef]
- Wotton, B.M.; Gould, J.S.; McCaw, W.L.; Cheney, N.P.; Taylor, S.W. Flame Temperature and Residence Time of Fires in Dry Eucalypt Forest. Int. J. Wildland Fire 2012, 21, 270–281. [Google Scholar] [CrossRef]
- Rossi, J.L.; Chatelon, F.J.; Marcelli, T. Fire Intensity. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–6. ISBN 978-3-319-51727-8. [Google Scholar]
- Hirsch, K.G.; Corey, P.N.; Martell, D.L. Using Expert Judgment to Model Initial Attack Fire Crew Effectiveness. For. Sci. 1998, 44, 539–549. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Fireline Intensity. In Encyclopedia of Wildfires Wildland-Urban Interface Fires; Springer: Berlin/Heidelberg, Germany, 2020; pp. 453–460. [Google Scholar]
- Alexander, M.E. Calculating and Interpreting Forest Fire Intensities. Can. J. Bot. 1982, 60, 349–357. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Dahale, A.; Ferguson, S.; Shotorban, B.; Mahalingam, S. Effects of Distribution of Bulk Density and Moisture Content on Shrub Fires. Int. J. Wildland Fire 2013, 22, 625–641. [Google Scholar] [CrossRef]
- Nelson, R.M. An Effective Wind Speed for Models of Fire Spread. Int. J. Wildlands Fire 2002, 11, 153–161. [Google Scholar] [CrossRef]
October 2021 | March 2022 | |
---|---|---|
Fuel Characteristics | ||
Fuel moisture content, FMC (%) | 56 | 51 |
Fuel bed depth, e (m) | 0.85 | 0.68 |
Dry fuel load, σ (kg/m2) | 1.79 | 2.67 |
Volume fraction, β | 0.0021 | 0.004 |
Surface-area to volume ratio, s (m−1) | 3100 | |
Particle density, (kg/m3) | 970 | |
Fuel specific heat, Cp (J/kg/K) | 1648 | |
Heat of combustion, ΔHc (J/kg) | 1.862 × 107 | |
Meteorological and topographical conditions | ||
Average wind speed in the slope direction, U3 (m/s) | 1.3 | 1.3 |
Ambient temperature T (°c) | 18 | 15 |
Relative humidity RH (%) | 53 | 36 |
Terrain slope value (°) | 22 | 16 |
October 2021 | March 2022 | |||||
---|---|---|---|---|---|---|
Experiment | 2D | 3D | Experiment | 2D | 3D | |
ROS (m/s) | 0.38 | 0.47 | 0.41 | 0.21 | 0.29 | 0.20 |
Fireline intensity (MW/m) | 12.7 | 9.9 | 8.4 | 10.4 | 9.5 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayad, J.; Morandini, F.; Accary, G.; Chatelon, F.-J.; Wandon, C.; Burglin, A.; Rossi, L.; Marcelli, T.; Cancellieri, D.; Cancellieri, V.; et al. A Study of Two High Intensity Fires across Corsican Shrubland. Atmosphere 2023, 14, 473. https://doi.org/10.3390/atmos14030473
Fayad J, Morandini F, Accary G, Chatelon F-J, Wandon C, Burglin A, Rossi L, Marcelli T, Cancellieri D, Cancellieri V, et al. A Study of Two High Intensity Fires across Corsican Shrubland. Atmosphere. 2023; 14(3):473. https://doi.org/10.3390/atmos14030473
Chicago/Turabian StyleFayad, Jacky, Frédéric Morandini, Gilbert Accary, François-Joseph Chatelon, Clément Wandon, Antoine Burglin, Lucile Rossi, Thierry Marcelli, Dominique Cancellieri, Valérie Cancellieri, and et al. 2023. "A Study of Two High Intensity Fires across Corsican Shrubland" Atmosphere 14, no. 3: 473. https://doi.org/10.3390/atmos14030473
APA StyleFayad, J., Morandini, F., Accary, G., Chatelon, F. -J., Wandon, C., Burglin, A., Rossi, L., Marcelli, T., Cancellieri, D., Cancellieri, V., Morvan, D., Meradji, S., Pieri, A., Planelles, G., Costantini, R., Briot, P., & Rossi, J. -L. (2023). A Study of Two High Intensity Fires across Corsican Shrubland. Atmosphere, 14(3), 473. https://doi.org/10.3390/atmos14030473