Seasonal Field Calibration of Low-Cost PM2.5 Sensors in Different Locations with Different Sources in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Low-Cost PM2.5 Sensors
2.2. Sampling Locations and Periods
2.3. Sensor Calibration
2.4. Performance Metrics
3. Results and Discussion
3.1. Source Characteristics of PM2.5 in Different Areas
3.2. Time Series of PM2.5 Concentrations, Ratio of LCS and FEM, RH and Temperature
3.3. Influence of Concentration Range, RH and Temperature Levels on Sensor Performance
3.4. Responses of the LCS to Emission Sources
3.5. Performance Metrics for Unadjusted PM2.5 Concentration
3.6. Calibration by LR Model and Performance Metrics for Adjusted LCS Based on Reference Concentration
3.7. Calibration Using MLR Models to Adjust LCS Based on Reference Concentration, RH and Temperature Levels
4. Conclusions
- At PM concentration < 20 µg/m3 and RH > 85%, PM2.5-LCS performance was significantly influenced.
- Location of the PM2.5-LCS was crucial to performance: a high traffic emission area (BKK) showed low correlation with reference monitors due to the effect of small particles.
- Unadjusted PM2.5-LCS performance varied with location, showing low to high correlations with FEM instruments (0.29 < R2 < 0.91).
- Performances of the adjusted PM2.5-LCS at BKK in both seasons and at CM during the wet season were not acceptable due to very small particle size from emission sources, and effect of low concentrations and RH level.
- After MRL calibration, performances of the PM2.5-LCS only at CM during the dry season and URT site during both seasons were acceptable with the CV: 5.76 ± 4.67%–6.84 ± 4.97%, slope: 0.829–0.945, intercept: 1.123–5.492 µg/m3, R2: 0.880–0.934 and RMSE: 4.285–5.102 µg/m3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
References
- Pani, S.K.; Chantara, S.; Khamkaew, C.; Lee, C.T.; Lin, N.H. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmos. Res. 2019, 224, 180–195. [Google Scholar] [CrossRef] [Green Version]
- Chantara, S.; Thepnuan, D.; Wiriya, W.; Prawan, S.; Tsai, Y.I. Emissions of pollutant gases, fine particulate matters and their significant tracers from biomass burning in an open-system combustion chamber. Chemosphere 2019, 224, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Thepnuan, D.; Chantara, S.; Lee, C.T.; Lin, N.H.; Tsai, Y.I. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Sci. Total Environ. 2019, 658, 708–722. [Google Scholar] [CrossRef] [PubMed]
- Chomanee, J.; Thongboon, K.; Tekasakul, S.; Furuuchi, M.; Dejchanchaiwong, R.; Tekasakul, P. Physicochemical and toxicological characteristics of nanoparticles in aerosols in southern Thailand during recent haze episodes in lower southeast Asia. J. Environ. Sci. 2020, 94, 72–80. [Google Scholar] [CrossRef] [PubMed]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Deelaman, W.; Suttinun, O.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Long-range Transboundary Atmospheric Transport of Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-soluble Ionic Species in Southern Thailand. Aerosol. Air Qual. Res. 2020, 20, 1591–1606. [Google Scholar] [CrossRef]
- Dejchanchaiwong, R.; Tekasakul, P.; Tekasakul, S.; Phairuang, W.; Nim, N.; Sresawasd, C.; Thongboon, K.; Thongyen, T.; Suwattiga, P. Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode. J. Environ. Sci. 2020, 97, 149–161. [Google Scholar] [CrossRef]
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2021, 272, 115940. [Google Scholar] [CrossRef]
- Dejchanchaiwong, R.; Tekasakul, P. Effects of Coronavirus Induced City Lockdown on PM2.5 and Gaseous Pollutant Concentrations in Bangkok. Aerosol. Air Qual. Res. 2021, 21, 200418. [Google Scholar] [CrossRef]
- Sresawasd, C.; Chetiyanukornkul, T.; Suriyawong, P.; Tekasakul, S.; Furuuchi, M.; Hata, M.; Malinee, R.; Tekasakul, P.; Dejchanchaiwong, R. Influence of Meteorological Conditions and Fire Hotspots on PM0.1 in Northern Thailand during Strong Haze Episodes and Carbonaceous Aerosol Characterization. Aerosol. Air Qual. Res. 2021, 21, 210069. [Google Scholar] [CrossRef]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Deelaman, W.; Iadtem, N.; Suttinun, O.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; et al. Effects of Agricultural Waste Burning on PM2.5-Bound Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai, Thailand. Polycycl. Aromat. Compd. 2022, 42, 749–770. [Google Scholar] [CrossRef]
- Mahasakpan, N.; Chaisongkaew, P.; Inerb, M.; Nim, N.; Phairuang, W.; Tekasakul, S.; Furuuchi, M.; Hata, M.; Kaosol, T.; Tekasakul, P.; et al. Fine and ultrafine particle- and gas-polycyclic aromatic hydrocarbons affecting southern Thailand air quality during transboundary haze and potential health effects. J. Environ. Sci. 2023, 124, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Kim Oanh, N.T.; Permadi, D.A.; Hopke, P.K.; Smith, K.R.; Dong, N.P.; Dang, A.N. Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [Google Scholar] [CrossRef]
- GISTDA. Thailand Fire Monitoring System. Available online: https://fire.gistda.or.th/ (accessed on 9 November 2022).
- Office of Agricultural Economics. Agricultural Production during the Year 2016-2019. Available online: https://www.oae.go.th/view/1/ (accessed on 4 November 2022).
- Oanh, N.T.K.; Ly, B.T.; Tipayarom, D.; Manandhar, B.R.; Prapat, P.; Simpson, C.D.; Liu, L.J.S. Characterization of particulate matter emission from open burning of rice straw. Atmos. Environ. 2011, 45, 493–502. [Google Scholar] [CrossRef] [Green Version]
- PCD. Thailand’s Air Quality and Situation Reports. Available online: http://air4thai.pcd.go.th/webV2/history/ (accessed on 15 November 2022).
- U.S.EPA. List of Designated Reference and Equivalent Methods; U.S. Environmental Protection Agency: Washington, DC, USA, 2017.
- Hu, J.; Zhang, H.; Chen, S.H.; Wiedinmyer, C.; Vandenberghe, F.; Ying, Q.; Kleeman, M.J. Predicting Primary PM 2.5 and PM 0.1 Trace Composition for Epidemiological Studies in California. Environ. Sci. Technol. 2014, 48, 4971–4979. [Google Scholar] [CrossRef]
- Bai, L.; Huang, L.; Wang, Z.; Ying, Q.; Zheng, J.; Shi, X.; Hu, J. Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing. Aerosol Air Qual. Res. 2020, 20, 242–253. [Google Scholar] [CrossRef]
- Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [Google Scholar] [CrossRef]
- Hong, G.-H.; Le, T.-C.; Tu, J.-W.; Wang, C.; Chang, S.-C.; Yu, J.-Y.; Lin, G.-Y.; Aggarwal, S.G.; Tsai, C.-J. Long-term evaluation and calibration of three types of low-cost PM2.5 sensors at different air quality monitoring stations. J. Aerosol Sci. 2021, 157, 105829. [Google Scholar] [CrossRef]
- Air Quality Information Center. Air Pollution in Thailand. Available online: https://pm2_5.nrct.go.th/ (accessed on 1 November 2022).
- Barkjohn, K.K.; Holder, A.L.; Frederick, S.G.; Clements, A.L. Correction and Accuracy of PurpleAir PM2.5 Measurements for Extreme Wildfire Smoke. Sensors 2022, 22, 9669. [Google Scholar] [CrossRef]
- Chu, H.J.; Ali, M.Z.; He, Y.C. Spatial calibration and PM2.5 mapping of low-cost air quality sensors. Sci. Rep. 2020, 10, 22079. [Google Scholar] [CrossRef]
- Tagle, M.; Rojas, F.; Reyes, F.; Vásquez, Y.; Hallgren, F.; Lindén, J.; Kolev, D.; Watne, Å.K.; Oyola, P. Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environ. Monit. Assess. 2020, 192, 171. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.K.; Bergin, M.H.; Russell, A.G.; Hagler, G.S.W. Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments. Aerosol Air Qual. Res. 2018, 18, 565–578. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Kosmopoulos, G.; Salamalikis, V.; Pandis, S.N.; Yannopoulos, P.; Bloutsos, A.A.; Kazantzidis, A. Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site. Sci. Total Environ. 2020, 748, 141396. [Google Scholar] [CrossRef] [PubMed]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Zusman, M.; Schumacher, C.S.; Gassett, A.J.; Spalt, E.W.; Austin, E.; Larson, T.V.; Carvlin, G.; Seto, E.; Kaufman, J.D.; Sheppard, L. Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study. Environ. Int. 2020, 134, 105329. [Google Scholar] [CrossRef]
- Levy Zamora, M.; Xiong, F.; Gentner, D.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environ. Sci. Technol. 2019, 53, 838–849. [Google Scholar] [CrossRef]
- Jayarathne, T.; Stockwell, C.E.; Gilbert, A.A.; Daugherty, K.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; et al. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2018, 18, 2585–2600. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Liang, L. Calibrating low-cost sensors for ambient air monitoring: Techniques, trends, and challenges. Environ. Res. 2021, 197, 111163. [Google Scholar] [CrossRef]
- Park, D.; Yoo, G.W.; Park, S.H.; Lee, J.H. Assessment and Calibration of a Low-Cost PM2.5 Sensor Using Machine Learning (HybridLSTM Neural Network): Feasibility Study to Build an Air Quality Monitoring System. Atmosphere 2021, 12, 1306. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Gantt, B.; Clements, A.L. Development and application of a United States-wide correction for PM<sub>2.5</sub> data collected with the PurpleAir sensor. Atmos. Meas. Tech. 2021, 14, 4617–4637. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, S.; Lee, J. Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea. Appl. Sci. 2019, 9, 1947. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. Digital Universal Particle Concentration Sensor pms7003 Series Data Manual. Available online: https://download.kamami.pl/p564008-PMS7003%20series%20data%20manua_English_V2.5.pdf (accessed on 9 November 2022).
- Jiang, Y.; Zhu, X.; Chen, C.; Ge, Y.; Wang, W.; Zhao, Z.; Cai, J.; Kan, H. On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. Ecotoxicol. Environ. Saf. 2021, 211, 111958. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Digital Universal Particle Concentration Sensor pms5003 Series Data Manual. Available online: https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf (accessed on 9 November 2022).
- Bulot, F.M.; Johnston, S.J.; Basford, P.J.; Easton, N.H.; Apetroaie-Cristea, M.; Foster, G.L.; Morris, A.K.; Cox, S.J.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 7497. [Google Scholar] [CrossRef] [Green Version]
- U.S.EPA. Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensor; U.S. Environmental Protection Agency: Washington, DC, USA, 2021.
- Adam, M.G.; Tran, P.T.M.; Bolan, N.; Balasubramanian, R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. J. Hazard. Mater. 2021, 407, 124760. [Google Scholar] [CrossRef]
- TMD. Monthly Mean Rainfall in Thailand (mm) 30 Years. Available online: https://www.tmd.go.th/en/ClimateChart/monthly-mean-rainfall-in-thailand-mm-30-years (accessed on 1 November 2022).
- Land Development Department. Land Use and Land Cover in 2019. Available online: https://www.ldd.go.th/home/ (accessed on 9 November 2022).
- Boonman, T.; Garivait, S.; Bonnet, S.; Junpen, A. An Inventory of Air Pollutant Emissions from Biomass Open Burning in Thailand Using MODIS Burned Area Product (MCD45A1). J. Sustain. Energy Environ. 2014, 5, 85–94. [Google Scholar]
- Oanh, N.T.K.; Tipayarom, A.; Bich, T.L.; Tipayarom, D.; Simpson, C.D.; Hardie, D.; Liu, L.J.S. Characterization of gaseous and semi-volatile organic compounds emitted from field burning of rice straw. Atmos. Environ. 2015, 119, 182–191. [Google Scholar] [CrossRef]
- Hagler, G.; Hanley, T.; Hassett-Sipple, B.; Vanderpool, R.; Smith, M.; Wilbur, J.; Wilbur, T.; Oliver, T.; Shand, D.; Vidacek, V.; et al. Evaluation of two collocated federal equivalent method PM2.5 instruments over a wide range of concentrations in Sarajevo, Bosnia and Herzegovina. Atmos. Pollut. Res. 2022, 13, 101374. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.-L.; Peng, Y.; Xu, L.; Zhu, C.; Cao, F.; Zhai, X.; Haque, M.M.; Yang, C.; Chang, Y.; et al. Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: Regionally transported biomass burning contribution. Atmos. Chem. Phys. 2019, 19, 11213–11233. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mattewal, S.K.; Patel, S.; Biswas, P. Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors. Aerosol Air Qual. Res. 2020, 20, 254–270. [Google Scholar] [CrossRef] [Green Version]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sens. 2018, 2018, 5096540. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Clark, J.D.; May, A.A. A systematic investigation on the effects of temperature and relative humidity on the performance of eight low-cost particle sensors and devices. J. Aerosol Sci. 2021, 152, 105715. [Google Scholar] [CrossRef]
- Liu, H.Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Kumar, S.P.N.; Zimmerman, N.; Kara, L.B.; Presto, A.A.; Subramanian, R. Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 2019, 12, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor. Aerosol Sci. Technol. 2020, 54, 147–159. [Google Scholar] [CrossRef]
- Chang, C.T.; Tsai, C.J. A model for the relative humidity effect on the readings of the PM10 beta-gauge monitor. J. Aerosol Sci. 2003, 34, 1685–1697. [Google Scholar] [CrossRef]
- Takahashi, K.; Minoura, H.; Sakamoto, K. Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter. Atmos. Environ. 2008, 42, 5232–5240. [Google Scholar] [CrossRef]
- Kiss, G.; Imre, K.; Molnár, Á.; Gelencsér, A. Bias caused by water adsorption in hourly PM measurements. Atmos. Meas. Tech 2017, 10, 2477–2484. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Hu, M.; Lin, P.; Liu, S.; Wehner, B.; Wiedensohler, A. Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ. 2008, 42, 7967–7980. [Google Scholar] [CrossRef]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Emission factors of ultrafine particulate matter (PM < 0.1 μm) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere 2021, 262, 127846. [Google Scholar]
- Hata, M.; Chomanee, J.; Thongyen, T.; Bao, L.; Tekasakul, S.; Tekasakul, P.; Otani, Y.; Furuuchi, M. Characteristics of nanoparticles emitted from burning of biomass fuels. J. Environ. Sci. 2014, 26, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Kuula, J.; Friman, M.; Helin, A.; Niemi, J.V.; Aurela, M.; Timonen, H.; Saarikoski, S. Utilization of scattering and absorption-based particulate matter sensors in the environment impacted by residential wood combustion. J. Aerosol Sci. 2020, 150, 105671. [Google Scholar] [CrossRef]
Regions | Station Name | Locations | Instruments (U.S. EPA FEM Approved) | Measurement Technique | Duration | Dry Season | Wet Season |
---|---|---|---|---|---|---|---|
Northern Thailand: Chiang Mai (CM site) | Chiang Mai municipal center (PCD station #35) | Lat:18.83737, Lon:98.97132 | BAM1020, MetOne, USA | Beta attenuation | 1 Dec 2020–31 Mar 2022 (16 months) | Dec 2020–Apr 2021 & Nov 2021–Mar 2022 (n = 7043) | May–Oct 2021 (n = 4005) |
Central Thailand: Bangkok (BKK site) | National Housing Authority Public Community Din Daeng (PCD station#54) | Lat:13.76470, Lon:100.55195 | MP101M, ENVEA, France | Beta attenuation | 1 Jan 2021–31 Mar 2022 (15 months) | Jan 2021–Apr 2021 & Nov 2021–Mar 2022 (n = 6022) | May–Oct 2021 (n = 4042) |
Northeast Thailand: Ubon Ratchathani (URT site) | Ubon Ratchathani Provincial Administrative Organization (PCD station#83) | Lat:15.245169, Lon:104.84680 | T640, Teledyne, USA | Light Scattering | 1 Mar 2020–31 May 2021 (15 months) | Mar–Apr 2020 & Nov 2020–Mar 2021 (n = 5198) | May–Oct 2020 & May 2021 (n = 4671) |
#Model | Type | Equations |
---|---|---|
1 | LR | |
2 | MLR | |
3 | MLR | |
4 | MLR | |
5 | MLR | |
6 | MLR | |
7 | MLR | |
8 | MLR | |
9 | MLR |
Sites | Dry Season | Wet Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PM2.5 LCS (µg/m3) | PM2.5 FEM (µg/m3) | Ratio LCS/FEM | Temperature (°C) | RH (%) | PM2.5 LCS (µg/m3) | PM2.5 FEM (µg/m3) | Ratio LCS/FEM | Temperature (°C) | RH (%) | |
CM | 41.3 ± 29.3 | 38.3±23.0 | 1.1 ± 0.3 | 24.4 ± 5.4 | 61.1 ± 20.3 | 10.5 ± 7.5 | 16.1 ± 5.5 | 0.6 ± 0.3 | 27.5 ± 3.3 | 74.5 ± 16.0 |
BKK | 26.5 ± 17.5 | 40.5 ± 18.4 | 0.7 ± 0.3 | 29.0 ± 2.7 | 66.4 ± 11.9 | 14.0 ± 10.8 | 23.6 ± 9.4 | 0.6 ± 0.4 | 29.9 ± 2.9 | 72.0 ± 12.3 |
URT | 39.2 ± 27.3 | 43.4 ± 37.3 | 0.9 ± 0.3 | 26.9 ± 5.4 | 59.9 ± 14.9 | 18.1 ± 15.5 | 15.4 ± 10.6 | 1.2 ± 0.5 | 28.1 ± 3.8 | 74.6 ± 15.1 |
Sites | Periods | Models | CV (%) | Slope (-) | Intercept (µg/m3) | R2 (-) | RMSE (µg/m3) |
---|---|---|---|---|---|---|---|
CM | Dry | Unadjusted | 14.47 ± 6.80 | 1.215 | −5.184 | 0.907 | 11.942 |
LR | 8.46 ± 5.99 | 0.907 | 3.553 | 0.907 | 7.131 | ||
MLR | 6.84 ± 4.97 | 0.945 | 2.414 | 0.934 | 5.102 | ||
Wet | Unadjusted | 21.53 ± 9.58 | 1.111 | −7.73 | 0.635 | 7.753 | |
LR | 13.76 ± 6.79 | 0.639 | 5.549 | 0.635 | 5.393 | ||
MLR | 11.69 ± 5.38 | 0.681 | 4.813 | 0.672 | 3.304 | ||
BKK | Dry | Unadjusted | 9.78 ± 5.77 | 0.714 | −2.398 | 0.561 | 17.646 |
LR | 7.32 ± 4.29 | 0.561 | 17.772 | 0.561 | 13.971 | ||
MLR | 5.49 ± 3.24 | 0.701 | 4.657 | 0.671 | 11.156 | ||
Wet | Unadjusted | 5.85 ± 3.86 | 0.619 | −0.543 | 0.291 | 13.707 | |
LR | 4.32 ± 2.46 | 0.291 | 16.709 | 0.291 | 10.918 | ||
MLR | 2.77 ± 1.43 | 0.322 | 15.961 | 0.322 | 7.773 | ||
URT | Dry | Unadjusted | 8.86 ± 7.30 | 0.679 | 9.733 | 0.856 | 16.486 |
LR | 6.74 ± 5.47 | 0.855 | 6.273 | 0.856 | 8.383 | ||
MLR | 5.76 ± 4.67 | 0.899 | 5.492 | 0.880 | 4.285 | ||
Wet | Unadjusted | 8.77 ± 8.14 | 0.842 | 5.087 | 0.815 | 7.692 | |
LR | 7.41 ± 6.95 | 0.815 | 2.864 | 0.815 | 6.711 | ||
MLR | 6.33 ± 5.94 | 0.829 | 1.123 | 0.893 | 5.378 |
Seasons | CM | BKK | URT | |||
---|---|---|---|---|---|---|
Nonlinear RH | Linear RH (Model #3) | Nonlinear RH | Linear RH (Model #3) | Nonlinear RH | Linear RH (Model #3) | |
Dry | 0.90 ± 0.01 | 0.926 | 0.56 ± 0.02 | 0.568 | 0.88 ± 0.01 | 0.873 |
Wet | 0.63 ± 0.02 | 0.664 | 0.29 ± 0.01 | 0.292 | 0.83 ± 0.01 | 0.846 |
Method | Best Fitting Model | Constants Parameters | CM | URT | |
---|---|---|---|---|---|
Dry | Dry | Wet | |||
MLR | Model 6 | f1 (Intercept) | - | 5.327 | - |
- | 1.853 | - | |||
- | −0.294 | - | |||
- | −0.076 | - | |||
- | −0.009 | - | |||
Model 9 | i1 (Intercept) | 27.192 | - | 78.664 | |
0.352 | - | −0.955 | |||
−0.397 | - | −1.847 | |||
−0.15 | - | −0.367 | |||
0.013 | - | 0.063 | |||
4.34 × 10−5 | - | 4.264 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dejchanchaiwong, R.; Tekasakul, P.; Saejio, A.; Limna, T.; Le, T.-C.; Tsai, C.-J.; Lin, G.-Y.; Morris, J. Seasonal Field Calibration of Low-Cost PM2.5 Sensors in Different Locations with Different Sources in Thailand. Atmosphere 2023, 14, 496. https://doi.org/10.3390/atmos14030496
Dejchanchaiwong R, Tekasakul P, Saejio A, Limna T, Le T-C, Tsai C-J, Lin G-Y, Morris J. Seasonal Field Calibration of Low-Cost PM2.5 Sensors in Different Locations with Different Sources in Thailand. Atmosphere. 2023; 14(3):496. https://doi.org/10.3390/atmos14030496
Chicago/Turabian StyleDejchanchaiwong, Racha, Perapong Tekasakul, Apichat Saejio, Thanathip Limna, Thi-Cuc Le, Chuen-Jinn Tsai, Guan-Yu Lin, and John Morris. 2023. "Seasonal Field Calibration of Low-Cost PM2.5 Sensors in Different Locations with Different Sources in Thailand" Atmosphere 14, no. 3: 496. https://doi.org/10.3390/atmos14030496
APA StyleDejchanchaiwong, R., Tekasakul, P., Saejio, A., Limna, T., Le, T. -C., Tsai, C. -J., Lin, G. -Y., & Morris, J. (2023). Seasonal Field Calibration of Low-Cost PM2.5 Sensors in Different Locations with Different Sources in Thailand. Atmosphere, 14(3), 496. https://doi.org/10.3390/atmos14030496