Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Definition of EHT
3. Results
3.1. Local Temperature and Circulation Anomalies
3.2. Large-Scale Circulation Anomalies and Their Evolutions
4. Conclusions and Discussions
4.1. Conclusions
4.2. Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGregor, G.R.; Ferro, C.A.T.; Stephenson, D.B. Projected changes in extreme weather and climate events in Europe. In Extreme Weather Events and Public Health Responses; Springer: Berlin/Heidelberg, Germany, 2005; pp. 13–23. [Google Scholar]
- Mcmichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef]
- Yatim, A.N.M.; Latif, M.T.; Ahamad, F.; Khan, M.F.; Nadzir, M.S.M.; Juneng, L. Observed Trends in Extreme Temperature over the Klang Valley, Malaysia. Adv. Atmos. Sci. 2019, 36, 1355–1370. [Google Scholar] [CrossRef]
- Pi, Y.; Yu, Y.; Zhang, Y.; Xu, C.; Yu, R. Extreme Temperature Events during 1960–2017 in the Arid Region of Northwest China: Spatiotemporal Dynamics and Associated Large-Scale Atmospheric Circulation. Sustainability 2020, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Forster, M.A.; Englefield, A. The water uses and growth response of grapevines to extreme temperature events. Theor. Exp. Plant Physiol. 2021, 33, 187–203. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, J.K.W.; Chio, C.P. Extreme temperature increases the risk of stillbirth in the third trimester of pregnancy. Sci. Rep. 2022, 12, 18474. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk to extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Su, Y.-W. The Effects of Extreme High Temperature Day Off on Electricity Conservation. Weather Clim. Soc. 2021, 13, 769–782. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Westcott, N.E. The Prolonged 1954 Midwestern, U.S. Heat Wave: Impacts and Responses. Weather Clim. Soc. 2011, 3, 165–176. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Almendra, R.; Loureiro, A.; Silva, G.; Vasconcelos, J.; Santana, P. Short-term impacts of air temperature on hospitalizations for mental disorders in Lisbon. Sci. Total Environ. 2019, 647, 127–133. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Li, C.; Yang, X. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Clim. Dyn. 2020, 54, 3003–3020. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, T. Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900-2010. J. Clim. 2014, 27, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zeng, G.; Yang, X.; Iyakaremye, V. Two spatial types of North China heatwaves and their possible links to Barents-Kara Sea ice changes. Int. J. Climatol. 2022, 42, 6876–6889. [Google Scholar] [CrossRef]
- Lu, C.; Ye, J.; Wang, S.; Yang, M.; Li, Q.; He, W.; Qin, Y.; Cai, J.; Mao, J. An Unusual Heat Wave in North China During Midsummer, 2018. Front. Earth Sci. 2020, 8, 238. [Google Scholar] [CrossRef]
- Gershunov, A.; Cayan, D.R.; Iacobellis, S.F. The Great 2006 Heat Wave over California and Nevada: Signal of an Increasing Trend. J. Clim. 2009, 22, 6181–6203. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Yang, S.; Ting, M.; Lin, A.; Wang, Z. An Intensified Mode of Variability Modulating the Summer Heat Waves in Eastern Europe and Northern China. Geophys. Res. Lett. 2018, 45, 11361–11369. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhou, W.; Wang, D.; Wang, C. The impacts of the summer Asian Jet Stream biases on surface air temperature in mid-eastern China in IPCC AR4 models. Int. J. Climatol. 2013, 33, 265–276. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, Y.; Lu, R. An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmos. Res. 2018, 209, 103–114. [Google Scholar] [CrossRef]
- Tao, P.; Zhang, Y. Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Ocean. Sci. Lett. 2019, 12, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Freychet, N.; Tett, S.; Wang, J.; Hegerl, G. Summer heat waves over Eastern China: Dynamical processes and trend attribution. Environ. Res. Lett. 2017, 12, 024015. [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Large-scale circulation anomalies associated with ‘tropical night’ weather in Beijing, China. Int. J. Climatol. 2014, 34, 1980–1989. [Google Scholar] [CrossRef]
- Lin, W.; Chen, R.; Wen, Z.; Chen, W. Large-scale circulation features responsible for different types of extreme high temperatures with extreme coverage over South China. Int. J. Climatol. 2022, 42, 974–992. [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Role of Large-Scale Circulation and Terrain in Causing Extreme Heat in Western North China. J. Clim. 2016, 29, 2511–2527. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Chen, Y.; Li, Y. An Inter-comparison of Three Heat Wave Types in China during 1961–2010: Observed Basic Features and Linear Trends. Sci. Rep. 2017, 7, 45619. [Google Scholar] [CrossRef] [Green Version]
- Galanaki, E.; Emmanouil, G.; Lagouvardos, K.; Kotroni, V. Long-Term Patterns and Trends of Shortwave Global Irradiance over the Euro-Mediterranean Region. Atmosphere 2021, 12, 1431. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Muelmenstaedt, J.; Salzmann, M.; Kay, J.E.; Zelinka, M.D.; Ma, P.-L.; Nam, C.; Kretzschmar, J.; Hörnig, S.; Quaas, J. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Chang. 2021, 11, 508–513. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, N.; Sun, J. Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta, China. J. Meteorol. Res. 2014, 28, 371–380. [Google Scholar] [CrossRef]
- Su, T.; Xue, F. The intraseasonal variation of summer monsoon circulation and rainfall in East Asia (in Chinese). Chin. J. Atmos. Sci. 2010, 34, 611–628. [Google Scholar]
- Ge, H.; Zeng, G.; Iyakaremye, V.; Yang, X.; Wang, Z. Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River. Atmosphere 2021, 12, 1265. [Google Scholar] [CrossRef]
- Liang, X.; Wang, W. Associations between China monsoon rainfall and tropospheric jets. Q. J. R. Meteorol. Soc. 1998, 124, 2597–2623. [Google Scholar] [CrossRef]
- Kuang, X.Y.; Zhang, Y.C. Seasonal variation of the East Asian Subtropical Westerly Jet and its association with the heating field over East Asia. Adv. Atmos. Sci. 2005, 22, 831–840. [Google Scholar]
- Lai, X.; Gong, Y.; Cen, S.; Tian, H.; Zhang, H. Impact of the Westerly Jet on Rainfall/Runoff in the Source Region of the Yangtze River during the Flood Season. Adv. Meteorol. 2020, 2020, 6726347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yuan, J.; Wen, Z.; Huang, S.; Chen, X.; Guo, Y.; Lin, Q. The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmos. Ocean. Sci. Lett. 2022, 15, 100212. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, G.; Zhang, G.; Li, J.; Li, Z.; Hao, Z. Interdecadal Variations of Different Types of Summer Heat Waves in Northeast China Associated with AMO and PDO. J. Clim. 2021, 34, 7783–7797. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Han, J. Relationship between the Circumglobal Teleconnection and Silk Road Pattern over Eurasian continent. Sci. Bull. 2019, 64, 374–376. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zeng, G.; Yang, X.; Iyakaremye, V. Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China. Atmosphere 2023, 14, 495. https://doi.org/10.3390/atmos14030495
Chen P, Zeng G, Yang X, Iyakaremye V. Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China. Atmosphere. 2023; 14(3):495. https://doi.org/10.3390/atmos14030495
Chicago/Turabian StyleChen, Peng, Gang Zeng, Xiaoye Yang, and Vedaste Iyakaremye. 2023. "Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China" Atmosphere 14, no. 3: 495. https://doi.org/10.3390/atmos14030495
APA StyleChen, P., Zeng, G., Yang, X., & Iyakaremye, V. (2023). Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China. Atmosphere, 14(3), 495. https://doi.org/10.3390/atmos14030495