Identification and Characteristics of Historical Extreme High-Temperature Events over the China–Pakistan Economic Corridor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
2.2.1. Data
2.2.2. Threshold Determination by Percentile Method
2.2.3. Identification of Extreme High-Temperature Events
2.2.4. Definition of Intensity, Frequency, and Duration of Extreme High-Temperature Events
2.2.5. Generalized Pareto Distribution
2.2.6. Significance Test
3. Results
3.1. Identification Results of Extreme High-Temperature Events
3.2. Time Variation of Extreme High-Temperature Events
3.3. Spatial Variation of Extreme High-Temperature Events
3.4. Return Period Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Chang. 2022, 12, 63–70. [Google Scholar] [CrossRef]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.K.; Rogelj, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Proceedings of the 2021 Intergovernmental Panel on Climate Change AR6, Remote, 26 July–7 August 2021. [Google Scholar]
- Oudin Åström, D.; Forsberg, B.; Ebi, K.L.; Rocklöv, J. Attributing mortality from extreme temperatures to climate change in stockholm, sweden. Nat. Clim. Chang. 2013, 3, 1050–1054. [Google Scholar] [CrossRef]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; de Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Palmer, T. Record-breaking winters and global climate change. Science 2014, 344, 803–804. [Google Scholar] [CrossRef]
- Hussain, M.; Butt, A.R.; Uzma, F.; Ahmed, R.; Irshad, S.; Rehman, A.; Yousaf, B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in pakistan. Environ. Monit. Assess. 2020, 192, 48. [Google Scholar] [CrossRef]
- Sun, X.; Sun, Q.; Zhou, X.; Li, X.; Yang, M.; Yu, A.; Geng, F. Heat wave impact on mortality in pudong new area, china in 2013. Sci. Total Environ. 2014, 493, 789–794. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, C.; Suen, H.P.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Cheng, L.; Cui, X.; Dai, H.; et al. The 2020 china report of the lancet countdown on health and climate change. Lancet Public Health 2021, 6, e64–e81. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, J.; Lin, W.; Wang, Y. Unprecedented heatwave in western north america during late june of 2021: Roles of atmospheric circulation and global warming. Adv. Atmos. Sci. 2022, 40, 14–28. [Google Scholar] [CrossRef]
- Lyon, B.; Barnston, A.G.; Coffel, E.; Horton, R.M. Projected increase in the spatial extent of contiguous us summer heat waves and associated attributes. Environ. Res. Lett. 2019, 14, 114029. [Google Scholar] [CrossRef]
- Keellings, D.; Moradkhani, H. Spatiotemporal evolution of heat wave severity and coverage across the united states. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Yan, Z.; Jones, P.D.; Davies, T.D.; Moberg, A.; Bergström, H.; Camuffo, D.; Cocheo, C.; Maugeri, M.; Demarée, G.R.; Verhoeve, T.; et al. Trends of extreme temperatures in europe and china based on daily observations. Clim. Chang. 2002, 1, 355–392. [Google Scholar] [CrossRef]
- Walsh, J.E.; Phillips, A.S.; Portis, D.H.; Chapman, W.L. Extreme cold outbreaks in the United States and Europe, 1948–1999. J. Clim. 2001, 14, 2642–2658. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, F.; Zhang, X. Spatial and temporal variations of regional high temperature events in china. Int. J. Climatol. 2014, 34, 3054–3065. [Google Scholar] [CrossRef]
- John, A.; Dracup; Seong, L.K.; Edwin, G.; Paulson, J. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar]
- Sheffield, J.; Andreadis, K.M.; Wood, E.F.; Lettenmaier, D.P. Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Clim. 2009, 22, 1962–1981. [Google Scholar] [CrossRef]
- Ren, F.; Cui, D.; Gong, Z.; Wang, Y.; Zou, X.; Li, Y.; Wang, S.; Wang, X. An objective identification technique for regional extreme events. J. Clim. 2012, 25, 7015–7027. [Google Scholar] [CrossRef]
- Cheng, J.; Tong, J.; Yanjun, W.; Jing, C.; Dongnan, J.; Lanxin, L.; Buda, S.U. A study on regional extreme precipitation events and the exposure of population and economy in china. Acta Meteorol. Sin. 2016, 74, 572–582. [Google Scholar]
- Wang, A.; Wang, Y.; Su, B.; Kundzewicz, Z.W.; Tao, H.; Wen, S.; Qin, J.; Gong, Y.; Jiang, T. Comparison of changing population exposure to droughts in river basins of the tarim and the indus. Earth’s Future 2020, 8, e2019EF001448. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Arnold, C. Death by climate change. Nat. Clim. Chang. 2022, 12, 607–609. [Google Scholar] [CrossRef]
- Grotjahn, R.; Black, R.; Leung, R.; Wehner, M.F.; Barlow, M.; Bosilovich, M.; Gershunov, A.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W.; et al. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2016, 46, 1151–1184. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Ren, G.; Shrestha, A.B.; Ren, Y.; You, Q.; Zhan, Y.; Xu, Y.; Rajbhandari, R. Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Adv. Clim. Chang. Res. 2017, 8, 157–165. [Google Scholar] [CrossRef]
- Ali, S.; Eum, H.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Nasim, W.; Khan, I.A.; et al. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Zeng, D.; Wu, J.; Mu, Y.; Li, H.; Deng, M.; Wei, Y.; Sun, W. An assessment of tourism climate comfort in the China–Pakistan economic corridor. Sustainability 2020, 12, 6981. [Google Scholar] [CrossRef]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A.; Xie, W.; Xie, X. Observed changes in temperature extremes over China-Pakistan economic corridor during 1980–2016. Int. J. Climatol. 2019, 39, 1457–1475. [Google Scholar] [CrossRef]
- Li, T.; Tao, H.; Chen, J. A gridded dataset of extremely low-temperature events in the China-Pakistan economic corridor during 1961–2015. China Sci. Data 2021, 6, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Mahmood, A.; Shoaib, M. Role of ethical leadership in improving employee outcomes through the work environment, work-life quality and ICT skills: A setting of China-Pakistan economic corridor. Sustainability 2022, 14, 11055. [Google Scholar] [CrossRef]
- Shelton, S.; Dixon, R.D. Long-term seasonal drought trends in the China-Pakistan economic corridor. Climate 2023, 11, 45. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ismail, T.B.; Wang, X. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ahmed, K.; Wang, X.; Ali, R.; Ismail, T.; Nawaz, N. Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan. Atmos. Res. 2020, 233, 104688. [Google Scholar] [CrossRef]
- Chen, J.; Tao, H.; Liu, J. A daily meteorological dataset in China-Pakistan economic corridor from 1961 to 2015. Sci. Data Bank 2021, 6, 229–238. [Google Scholar]
- Zhai, P.; Pan, X. Change in extreme temperature and precipitation over northern China during the second half of the 20th century. Acta Geogr. Sin. 2003, 58, 1–10. [Google Scholar]
- Fan, L.; Yan, Z.; Chen, D.; Li, Z. Assessment of central asian heat extremes by statistical downscaling: Validation and future projection for 2015–2100. Adv. Clim. Chang. Res. 2022, 13, 14–27. [Google Scholar] [CrossRef]
- Lv, Y.; Jiang, T.; Tao, H.; Zhai, J.; Wang, Y. Spatial-temporal patterns of population exposed to the extreme maximum temperature events in the belt and road regions. Sci. Technol. Rev. 2020, 38, 68–79. [Google Scholar]
- Zheng, B.; Chenu, K.; Fernanda Dreccer, M.; Chapman, S.C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 2012, 18, 2899–2914. [Google Scholar] [CrossRef]
- Coma, R.; Ribes, M.; Serrano, E.; Jiménez, E.; Salat, J.; Pascual, J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc. Natl. Acad. Sci. USA 2009, 106, 6176–6181. [Google Scholar] [CrossRef] [Green Version]
- Mazdiyasni, O.; Aghakouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 11484–11489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, J.; Huang, J.; Su, B.; Cao, L.; Wang, Y.; Jiang, T.; Fischer, T. Intensity–area–duration analysis of droughts in China 1960–2013. Clim. Dyn. 2017, 48, 151–168. [Google Scholar] [CrossRef]
- Wen, S.; Wang, A.; Tao, H.; Malik, K.; Huang, J.; Zhai, J.; Jing, C.; Rasul, G.; Su, B. Population exposed to drought under the 1.5 °C and 2.0 °C warming in the Indus river basin. Atmos. Res. 2019, 218, 296–305. [Google Scholar] [CrossRef]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil moisture drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. A spatio-temporal structure-based approach to drought characterisation. Int. J. Climatol. 2012, 32, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- El Rafei, M.; Sherwood, S.; Evans, J.P.; Ji, F. Analysis of extreme wind gusts using a high-resolution Australian regional reanalysis. Weather Clim. Extrem. 2023, 39, 100537. [Google Scholar] [CrossRef]
- Rivoire, P.; Le Gall, P.; Favre, A.; Naveau, P.; Olivia Martius, A.D. High return level estimates of daily era-5 precipitation in Europe estimated using regionalized extreme value distributions. Weather Clim. Extrem. 2022, 38, 100500. [Google Scholar] [CrossRef]
- Singirankabo, E.; Iyamuremye, E. Modelling extreme rainfall events in kigali city using generalized pareto distribution. Meteorol. Appl. 2022, 29, e2076. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Santos E Silva, C.M.; Souza, D.O. Spatial distribution of the level of return of extreme precipitation events in northeast Brazil. Int. J. Climatol. 2020, 40, 5098–5113. [Google Scholar] [CrossRef]
- Tebaldi, C.; Strauss, B.H.; Zervas, C.E. Modelling sea level rise impacts on storm surges along us coasts. Environ. Res. Lett. 2012, 7, 14011–14032. [Google Scholar] [CrossRef]
- Mizuta, R.; Endo, H. Projected changes in extreme precipitation in a 60-km agcm large ensemble and their dependence on return periods. Geophys. Res. Lett. 2020, 47, e2019GL086855. [Google Scholar] [CrossRef]
- Raschke, M. About the return period of a catastrophe. Nat. Hazards Earth Syst. Sci. 2022, 22, 245–263. [Google Scholar] [CrossRef]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.P.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on european ecosystem productivity. Sci. Adv. 2020, 6, a2714–a2724. [Google Scholar] [CrossRef]
- El-Madany, T.S.; Carrara, A.; Martín, M.P.; Moreno, G.; Kolle, O.; Pacheco-Labrador, J.; Weber, U.; Wutzler, T.; Migliavacca, M.R. Mirco Drought and heatwave impacts on semi-arid ecosystems’ carbon fluxes along a precipitation gradient. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190519. [Google Scholar] [CrossRef]
- Zampieri, M.; Russo, S.; di Sabatino, S.; Michetti, M.; Scoccimarro, E.; Gualdi, S. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the alps. Sci. Total Environ. 2016, 571, 1330–1339. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, B.; Liu, P.; Zhang, Y.; Hou, L.; Yuan, X. Exposure to extreme climate decreases self-rated health score: Large-scale survey evidence from china. Glob. Environ. Chang. 2022, 74, 102514. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci. China Earth Sci. 2019, 62, 1551–1563. [Google Scholar] [CrossRef]
- Chambers, J. Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018. Clim. Chang. 2020, 163, 539–558. [Google Scholar] [CrossRef]
- Jones, B.; O Neill, B.C.; Mcdaniel, L.; Mcginnis, S.; Mearns, L.O.; Tebaldi, C. Future population exposure to us heat extremes. Nat. Clim. Chang. 2015, 5, 652–655. [Google Scholar] [CrossRef]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef] [PubMed]
- Bellprat, O.; Guemas, V.; Doblas-Reyes, F.; Donat, M.G. Towards reliable extreme weather and climate event attribution. Nat. Commun. 2019, 10, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faranda, D.; Vrac, M.; Yiou, P.; Jézéquel, A.; Thao, S. Changes in future synoptic circulation patterns: Consequences for extreme event attribution. Geophys. Res. Lett. 2020, 47, e2020GL088002. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Stone, D.A.; Mitchell, D.M.; Rosier, S.; King, A.D.; Lo, Y.T.E.; Pastor-Paz, J.; Frame, D.; Wehner, M. On the attribution of the impacts of extreme weather events to anthropogenic climate change. Environ. Res. Lett. 2022, 17, 24009. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Hagan, D.F.T.; Ali, A.; Ali, G.; Zhang, Y.; Jan, M.A.; Bhatti, A.S.; Xie, W. Daytime and nighttime heat wave characteristics based on multiple indices over the China–Pakistan economic corridor. Clim. Dyn. 2019, 53, 6329–6349. [Google Scholar] [CrossRef]
- Monteiro, J.M.; Caballero, R. Characterization of extreme wet-bulb temperature events in southern Pakistan. Geophys. Res. Lett. 2019, 46, 10659–10668. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Malik, S.M.; Awan, H.; Khan, N. Mapping vulnerability to climate change and its repercussions on human health in Pakistan. Global. Health 2012, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Im, E.; Pal, J.S.; Eltahir, E.A.B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 2017, 3, e1603322. [Google Scholar] [CrossRef] [Green Version]
- Saeed, F.; Almazroui, M.; Islam, N.; Khan, M.S. Intensification of future heat waves in Pakistan: A study using CORDEX regional climate models ensemble. Nat. Hazards 2017, 87, 1635–1647. [Google Scholar] [CrossRef]
- Aslam, A.Q.; Ahmad, S.R.; Ahmad, I.; Hussain, Y.; Hussain, M.S. Vulnerability and impact assessment of extreme climatic event: A case study of southern Punjab, Pakistan. Sci. Total Environ. 2017, 580, 468–481. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ismail, T.; Ahmed, K.; Nawaz, N. Trends in heat wave related indices in Pakistan. Stoch. Environ. Res. Risk Assess. 2019, 33, 287–302. [Google Scholar] [CrossRef]
- Saddique, N.; Khaliq, A.; Bernhofer, C. Trends in temperature and precipitation extremes in historical (1961–1990) and projected (2061–2090) periods in a data scarce mountain basin, northern Pakistan. Stoch. Environ. Res. Risk Assess. 2020, 34, 1441–1455. [Google Scholar] [CrossRef]
- Nasim, W.; Amin, A.; Fahad, S.; Awais, M.; Khan, N.; Mubeen, M.; Wahid, A.; Rehman, M.H.; Ihsan, M.Z.; Ahmad, S.; et al. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan. Atmos. Res. 2018, 205, 118–133. [Google Scholar] [CrossRef]
- Herring, S.C.; Hoell, A.; Hoerling, M.P.; Kossin, J.P.; Iii, C.J.S.; Stott, P.A. Explaining extreme events of 2015 from a climate perspective. Bull. Amer. Meteorol. Soc. 2016, 97, S1–S145. [Google Scholar] [CrossRef] [Green Version]
- Masood, I.; Majid, Z.; Sohail, S.; Zia, A.; Raza, S. The deadly heat wave of Pakistan, June 2015. Int. J. Occup. Environ. Med. 2015, 6, 247–248. [Google Scholar] [CrossRef] [Green Version]
Essential Factor | Definition | Units |
---|---|---|
Strength | The intensity is the annual average maximum temperature of extreme high-temperature events | ℃ |
Frequency | The frequency is the annual average number of extreme high-temperature events | times |
Duration | The duration is the annual average duration of extreme high-temperature events | days |
Serial Number | Extreme High-Temperature Events | |
---|---|---|
Start and End Time | Duration (days) | |
1 | 1 May 1978–25 May 1978 | 25 |
2 | 2 June 1979–21 June 1979 | 20 |
3 | 27 May 1982–16 June1982 | 21 |
4 | 16 May 1984–11 June 1984 | 27 |
5 | 8 May 1989–27 May 1989 | 21 |
6 | 5 June 1992–24 June 1992 | 20 |
7 | 25 May 1995–9 June 1995 | 16 |
8 | 29 May 2003–17 June 2003 | 20 |
9 | 11 May 2010–2 June 2010 | 23 |
10 | 12 May 2011–23 May 2011 | 11 |
12 | 19 July 2013–31 July 2013 | 13 |
13 | 20 May 2014–2 July 2014 | 44 |
14 | 20 June 2015–12 July 2015 | 30 |
15 | 1 October 2015–12 October 2015 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Bao, A. Identification and Characteristics of Historical Extreme High-Temperature Events over the China–Pakistan Economic Corridor. Atmosphere 2023, 14, 530. https://doi.org/10.3390/atmos14030530
Li T, Bao A. Identification and Characteristics of Historical Extreme High-Temperature Events over the China–Pakistan Economic Corridor. Atmosphere. 2023; 14(3):530. https://doi.org/10.3390/atmos14030530
Chicago/Turabian StyleLi, Tao, and Anming Bao. 2023. "Identification and Characteristics of Historical Extreme High-Temperature Events over the China–Pakistan Economic Corridor" Atmosphere 14, no. 3: 530. https://doi.org/10.3390/atmos14030530
APA StyleLi, T., & Bao, A. (2023). Identification and Characteristics of Historical Extreme High-Temperature Events over the China–Pakistan Economic Corridor. Atmosphere, 14(3), 530. https://doi.org/10.3390/atmos14030530