Separation of Ambient Radio Noise and Radio Signals Received via Ionospheric Propagation
Abstract
:1. Introduction
1.1. Ambient Electromagnetic Noise Models
1.2. Remote Rural Noise as a Baseline for Spectrum Planning
1.3. Contributions of This Article
2. Ionospheric Propagation of Noise
2.1. Evidence of Ionospheric Propagation of Noise
2.2. Terrestrial and Extraterrestrial Background Noise
2.3. Ionospheric Reflection of Artificial Noise from Cities
3. Method Used to Obtain the Background Ionospheric Noise
3.1. The Original Polarimetric Experiment
3.2. A New Procedure to Obtain the Background Radio Noise
3.3. Antenna Modifications to Obtain the Background Noise
3.4. Modifications to the Overall System Calibration
3.5. Modification to the Spectral and Temporal Filtering
3.6. A Novel Adaptive Filter for the Removal of Narrowband Radio Signals
3.7. Removal of Impulsive Noise
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraus, J.D. Antennas, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Obenberger, K.S.; Dowell, J.D.; Malins, J.B.; Parris, R.; Pedersen, T.; Taylor, G.B. Using lightning as a HF signal source to produce ionograms. Radio Sci. 2018, 53, 1419–1425. [Google Scholar] [CrossRef]
- Ryan, A.M. Low Frequency Observations of the Solar Corona Using LOFAR. Ph.D. Thesis, Trinity College, Dublin, Ireland, 21 December 2021. [Google Scholar]
- Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M.R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.L.; Bruzzone, L.; et al. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter. Plan. Space Sci. 2012, 61, 32–45. [Google Scholar] [CrossRef]
- Zarka, P.; Kurth, W.S. Radio wave emission from the outer planets before Cassini. Space Sci. Rev. 2005, 116, 371–397. [Google Scholar] [CrossRef]
- Jansky, K.G. Electrical disturbances apparently of extraterrestrial origin. Proc. IRE 1933, 21, 1387–1398. [Google Scholar] [CrossRef]
- Radio Noise; Recommendation ITU-R P.372-15; International Telecommunication Union: Geneva, Switzerland, 2021.
- Disney, R.T.; Spaulding, A.D. Amplitude and Time Statistics of Atmospheric and Man-Made Radio Noise; ESSA Technical Report ERL 150-ITS 98; Institute for Telecommunication Sciences: Boulder, CO, USA, 1970. [Google Scholar]
- Fockens, K.T.W.H.; Leferink, F. Correlation between measured man-made noise levels and the density of habitation. IEEE Trans. Electromagn. Compat. 2020, 62, 2696–2703. [Google Scholar] [CrossRef]
- Rudd, R.; Medbo, J.; Lewicki, F.; Chaves, F.; Rodriguez Larrad, I. The Development of the New ITU-R Model for Building Entry Loss. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Leferink, F.; Silva, F.; Catrysse, J.; Batterman, S.; Beauvois, V.; Roc’h, A. Man-made noise in our living environments. URSI Radio Sci. Bull. 2010, 2010, 49–57. [Google Scholar]
- Breton, D.J.; Haedrich, C.E.; Kamrath, M.J.; Wilson, D.K. Street-scale mapping of urban radio frequency noise at very high frequency and ultra high frequency. Radio Sci. 2019, 54, 934–948. [Google Scholar] [CrossRef]
- Zöllner, J.; Robert, J.; Slimani, M.; Schlegel, P.; Pulsmeier, M. Analysis of the impact of man-made noise on DVB-T and DVB-T2. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Seoul, Republic of Korea, 27 June 2012; pp. 1–6. [Google Scholar]
- DAC List of ODA Recipients. Available online: https://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/DAC-List-of-ODA-Recipients-for-reporting-2022-23-flows.pdf (accessed on 10 January 2023).
- Witvliet, B.A.; Alsina-Pagès, R.M.; Van Maanen, E.; Laanstra, G.J. Design and validation of probes and sensors for the characterization of magneto-ionic radio wave propagation on Near Vertical Incidence Skywave paths. Sensors 2019, 19, 2616–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K. Ionospheric Radio; IEE Electromagnetic Waves Series 31; P. Peregrinus: London, UK, 1990. [Google Scholar]
- Ground-Wave Propagation Prediction Method for Frequencies between 10 kHz and 30 MHz; Recommendation ITU-R P.368-10; International Telecommunication Union: Geneva, Switzerland, 2022.
- Füllekrug, M.; Liu, Z.; Koh, K.; Mezentsev, A.; Pedeboy, S.; Soula, S.; Enno, S.-E.; Sugier, J.; Rycroft, M.J. Mapping lightning in the sky with a mini array. Geophys. Res. Lett. 2016, 43, 10448–10454. [Google Scholar] [CrossRef] [Green Version]
- Pederick, L.H.; Cervera, M.A. A directional HF noise model: Calibration and validation in the Australian region. Radio Sci. 2016, 51, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Witvliet, B.A.; Van Maanen, E.; Petersen, G.J.; Westenberg, A.J. Impact of a Solar X-Flare on NVIS Propagation: Daytime characteristic wave refraction and nighttime scattering. IEEE Antennas Propag. Mag. 2016, 58, 29–37. [Google Scholar] [CrossRef]
- Martyn, D.F. The propagation of medium radio waves in the ionosphere. Proc. Phys. Soc. 1935, 47, 323–339. [Google Scholar] [CrossRef]
- Smith, N. The relation of radio sky-wave transmission to ionosphere measurements. Proc. IRE 1939, 27, 332–347. [Google Scholar] [CrossRef]
- Obenberger, K.S.; Dowell, J.; Fallen, C.T.; Holmes, J.M.; Taylor, G.B.; Varghese, S.S. Using broadband radio noise from powerlines to map and track dense Es structures. Radio Sci. 2021, 56, 1–17. [Google Scholar] [CrossRef]
- Witvliet, B.A.; Van Maanen, E.; Bentum, M.J.; Slump, C.H.; Schiphorst, R. A novel method for the evaluation of polarization and hemisphere coverage of HF ambient noise measurement antennas. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 289–294. [Google Scholar]
- Ratcliffe, J.A. The Magneo-Ionic Theory and Its Application to the Ionosphere; Cambridge University Press: London, UK, 1962. [Google Scholar]
- Rawer, K. Wave Propagation in the Ionosphere; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Witvliet, B.A.; Laanstra, G.J.; Van Maanen, E.; Alsina-Pagès, R.M.; Bentum, M.J.; Slump, C.H.; Schiphorst, R. A transportable hybrid antenna-transmitter system for the generation of elliptically polarized waves for NVIS propagation research. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Witvliet, B.A.; Alsina-Pagès, R.M. Radio communication via Near Vertical Incidence Sky wave propagation: An overview. Telecommun. Syst. 2017, 66, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Witvliet, B.A.; Van Maanen, E.; Petersen, G.J.; Westenberg, A.J.; Bentum, M.J.; Slump, C.H.; Schiphorst, R. Near Vertical Incidence Skywave propagation: Elevation angles and optimum antenna height for horizontal dipole antennas. IEEE Ant. Prop. Mag. 2015, 57, 129–146. [Google Scholar] [CrossRef]
- Ellingson, S.W.; Clarke, T.E.; Cohen, A.; Craig, J.; Kassim, N.E.; Pihlstrom, Y.; Rickard, L.J.; Taylor, G.B. The long wavelength array. Proc. IEEE 2009, 97, 1421–1430. [Google Scholar] [CrossRef]
- van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The low-frequency array. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef] [Green Version]
Date | Local Time [UTC + 1] | PSDrx [dBW/Hz] | Cant [dB] | Famb [dB] |
---|---|---|---|---|
11 February 2016 | 07:00–08:00 | −164.5 | 2.5 | 37.0 |
11 February 2016 | 08:00–09:00 | −162.8 | 2.5 | 38.7 |
11 February 2016 | 09:00–10:00 | −164.7 | 2.5 | 36.8 |
11 February 2016 | 10:00–11:00 | −166.6 | 2.5 | 34.9 |
11 February 2016 | 11:00–12:00 | −166.9 | 2.5 | 34.6 |
11 February 2016 | 12:00–13:00 | −168.9 | 2.5 | 32.6 |
11 February 2016 | 13:00–14:00 | −169.1 | 2.5 | 32.4 |
11 February 2016 | 14:00–15:00 | −167.2 | 2.5 | 34.3 |
11 February 2016 | 15:00–16:00 | −166.5 | 2.5 | 35.0 |
11 February 2016 | 16:00–17:00 | −164.0 | 2.5 | 37.5 |
11 February 2016 | 17:00–18:00 | −160.7 | 2.5 | 40.8 |
12 February 2021 | 07:00–08:00 | −164.2 | 2.5 | 37.3 |
12 February 2021 | 08:00–09:00 | −163.1 | 2.5 | 38.4 |
12 February 2021 | 09:00–10:00 | −164.8 | 2.5 | 36.7 |
12 February 2021 | 10:00–11:00 | −166.3 | 2.5 | 35.2 |
12 February 2021 | 11:00–12:00 | −167.4 | 2.5 | 34.1 |
12 February 2021 | 12:00–13:00 | −170.1 | 2.5 | 31.4 |
12 February 2021 | 13:00–14:00 | −169.9 | 2.5 | 31.6 |
12 February 2021 | 14:00–15:00 | −169.0 | 2.5 | 32.5 |
12 February 2021 | 15:00–16:00 | −166.6 | 2.5 | 34.9 |
12 February 2021 | 16:00–17:00 | −164.0 | 2.5 | 37.5 |
12 February 2021 | 17:00–18:00 | −161.1 | 2.5 | 40.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witvliet, B.A.; Alsina-Pagès, R.M.; Altadill, D.; van Maanen, E.; Laanstra, G.J. Separation of Ambient Radio Noise and Radio Signals Received via Ionospheric Propagation. Atmosphere 2023, 14, 529. https://doi.org/10.3390/atmos14030529
Witvliet BA, Alsina-Pagès RM, Altadill D, van Maanen E, Laanstra GJ. Separation of Ambient Radio Noise and Radio Signals Received via Ionospheric Propagation. Atmosphere. 2023; 14(3):529. https://doi.org/10.3390/atmos14030529
Chicago/Turabian StyleWitvliet, Ben A., Rosa M. Alsina-Pagès, David Altadill, Erik van Maanen, and Geert Jan Laanstra. 2023. "Separation of Ambient Radio Noise and Radio Signals Received via Ionospheric Propagation" Atmosphere 14, no. 3: 529. https://doi.org/10.3390/atmos14030529
APA StyleWitvliet, B. A., Alsina-Pagès, R. M., Altadill, D., van Maanen, E., & Laanstra, G. J. (2023). Separation of Ambient Radio Noise and Radio Signals Received via Ionospheric Propagation. Atmosphere, 14(3), 529. https://doi.org/10.3390/atmos14030529