Future Changes in Thermal Bioclimate Conditions over West Bengal, India, Based on a Climate Model
Abstract
:1. Introduction
2. Study Regions
3. Data
4. Applied Methodology
- class = Cold, Cool, Slightly cool, Neutral, Slightly warm, Warm, Hot;
- STN = Digha, Diamond Harbour, Canning, Baruipur, Alipore (Kolkata), Dum Dum, Kharagpur, Chinsurah, Krishnanagar, Sriniketan, Asansol, Birbhum, Malda, Siliguri, Darjeeling;
- PERIOD = 2016–2035, 2046–2065, 2080–2099;
- REFERENCE = 1986–2005.
Thermal Sensation | PET Range for Western European Cities (°C) | PET Range for Taiwan (°C) | PET Range for Dhaka (°C) | PET Range for Kolkata (°C) |
---|---|---|---|---|
Very cold | <4 | <14 | ||
Very cool/Cold | 4–8 | 14–18 | <3.31 | |
Cool | 8–13 | 18–22 | 23.5–26.5 | 3.31–11.42 |
Slightly cool | 13–18 | 22–26 | 26.5–29.5 | 11.42–19.48 |
Neutral | 18–23 | 26–30 | 29.5–32.5 | 19.48–27.59 |
Slightly warm | 23–29 | 30–34 | 32.5–35.5 | 27.59–35.73 |
Warm | 29–35 | 34–38 | 35.5–38.5 | 35.73–43.83 |
Hot | 35–41 | 38–42 | >38.5 | >43.83 |
Very Hot | >41 | >42 |
5. Results
5.1. Monthly Variation of PET
5.2. Future Changes in PET against the Past Period under Different RCP Scenarios
5.3. Differences in Monthly Temperature and PET under Different RCP Scenarios
5.4. Importance of Data Quality in Estimating Human Bioclimate Conditions
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 741–866. [Google Scholar]
- van Oldenborgh, G.J.; Collins, M.; Arblaster, J.; Christensen, J.H.; Marotzke, J.; Power, S.B.; Rummukainen, M.; Zhou, T. Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 996. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.; Cubasch, U.; Emori, S. Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33–115. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, 10. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Ashfaq, M. Intensification of hot extremes in the United States. Geophys. Res. Lett. 2010, 37, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Qian, W.; Yan, Z. Changes in hot days and heat waves in China during 1961–2007. Int. J. Clim. 2009, 30, 1452–1462. [Google Scholar] [CrossRef]
- Tank, A.M.G.K.; Peterson, T.C.; Quadir, D.A.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.R.; Jaswal, A.K.; Kolli, R.K.; et al. Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res. Atmos. 2006, 111, D16105. [Google Scholar] [CrossRef] [Green Version]
- Kothawale, D.R.; Kumar, K.R. On the recent changes in surface temperature trends over India. Geophys. Res. Lett. 2005, 32, 18714. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, V. A sixfold rise in concurrent day and night-time heatwaves in India under 2 °C warming. Sci. Rep. 2018, 8, 16922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.; Joshi, M.K.; Pandey, A.C. Variations in diurnal temperature range over India: Under global warming scenario. J. Geophys. Res. Atmos. 2012, 117, D02114. [Google Scholar] [CrossRef]
- Vinnarasi, R.; Dhanya, C.T.; Chakravorty, A.; AghaKouchak, A. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones. Sci. Rep. 2017, 7, 7350. [Google Scholar] [CrossRef] [Green Version]
- Pai, D.; Nair, S.; Ramanathan, A. Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010). Mausam 2013, 64, 585–604. [Google Scholar] [CrossRef]
- Rohini, P.; Rajeevan, M.; Srivastava, A.K. On the Variability and Increasing Trends of Heat Waves over India. Sci. Rep. 2016, 6, 26153. [Google Scholar] [CrossRef] [Green Version]
- Jaswal, A.; Padmakumari, B.; Kumar, N.; Kore, P. Increasing Trend in Temperature and Moisture Induced Heat Index and Its Effect on Human Health in Climate Change Scenario over the Indian Sub-continent. J. Clim. Chang. 2017, 3, 11–25. [Google Scholar] [CrossRef]
- De, U.; Dube, R.K.; Rao, G.P. Extreme weather events over India in the last 100 years. J. Ind. Geophys. Union 2005, 9, 173–187. [Google Scholar]
- Das, B.; Chakraborty, R. Climate Change Scenario of West Bengal, India: A Geo-Environmental Assessment. Indian Cartogr. 2016, 36, 425–441. [Google Scholar]
- Jha, V.C. Indian Cartographer. 2016. Available online: https://www.academia.edu/36558530/Indian_Cartographer_Vol_36_Part_I_2016_ISSN_0927_8392_pdf (accessed on 19 February 2023).
- Government of West Bengal. West Bengal State Action Plan on Climate Change (WBAPCC, 2012) Repor; Government of West Bengal, Government of India: Howrah, India, 2012. Available online: http://www.nicra-icar.in/nicrarevised/images/State%20Action%20Plan/West-Bengal-SAPCC.pdf (accessed on 19 February 2023).
- Azhar, G.S.; Mavalankar, D.; Nori-Sarma, A.; Rajiva, A.; Dutta, P.; Jaiswal, A.; Sheffield, P.; Knowlton, K.; Hess, J.J.; Ahmedabad HeatClimate Study Group. Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave. PLoS ONE 2014, 9, e91831. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.; Sodoudi, S. Modeling and prediction of dengue occurrences in Kolkata, India, based on climate factors. Int. J. Biometeorol. 2020, 64, 1379–1391. [Google Scholar] [CrossRef]
- Landsberg, H.E. The Assessment of Human Bioclimate; World Meteorological Organization (WMO): Geneva, Switzerland, 1972. [Google Scholar]
- Gagge, A.P.; Fobelets, A.; Berglund, L. A standard predictive Index of human reponse to thermal enviroment. Trans.Am. Soc. Heat. Refrig. Air-Cond. Eng. 1986, 92, 709–731. [Google Scholar]
- Staiger, H.; Laschewski, G.; Grätz, A. The perceived temperature–a versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012, 56, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The physiological equivalent temperature–A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Havenith, G.; Fiala, D.; Błazejczyk, K.; Richards, M.; Bröde, P.; Holmér, I.; Rintamaki, H.; Benshabat, Y.; Jendritzky, G. The UTCI-clothing model. Int. J. Biometeorol. 2012, 56, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E.; Rossi, F.; Drach, P. Calibration of the physiological equivalent temperature index for three different climatic regions. Int. J. Biometeorol. 2017, 61, 1323–1336. [Google Scholar] [CrossRef]
- Galindo, T.; Hermida, M.A. Effects of thermophysiological and non-thermal factors on outdoor thermal perceptions: The Tomebamba Riverbanks case. Build. Environ. 2018, 138, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E.L.; Costa, T. Interferences of urban form on human thermal perception. Sci. Total. Environ. 2019, 653, 1067–1076. [Google Scholar] [CrossRef]
- Amindeldar, S.; Heidari, S.; Khalili, M. The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in Tehran in cold season. Sustain. Cities Soc. 2017, 32, 153–159. [Google Scholar] [CrossRef]
- Ndetto, E.L.; Matzarakis, A. Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania. Int. J. Biometeorol. 2017, 61, 69–85. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Jendritzky, G.; Bucher, K.; Laschewski, G.; Walther, H. Atmospheric heat exchange of the human being, bioclimate assessments, mortality and thermal stress. Int. J. Circumpolar Health 2000, 59, 222. [Google Scholar] [PubMed]
- Gonzalez, R.; Nishi, Y.; Gagge, A. Experimental evaluation of standard effective temperature a new biometeorological index of man’s thermal discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef]
- Matzarakis, A. Weather- and climate-related information for tourism. Tour. Hosp. Plan. Dev. 2006, 3, 99–115. [Google Scholar] [CrossRef]
- Rodríguez-Algeciras, J.; Algeciras, J.A.R.; Chaos-Yeras, M.; Matzarakis, A. Tourism-related climate information for adjusted and responsible planning in the tourism industry in Barcelona, Spain. Theor. Appl. Clim. 2020, 142, 1003–1014. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tour. Manag. 2011, 32, 492–500. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Matzarakis, A. Modified physiologically equivalent temperature—Basics and applications for western European climate. Theor. Appl. Clim. 2018, 132, 1275–1289. [Google Scholar] [CrossRef]
- IPCC. Future Global Climate: Scenario-Based Projections and Near-Term Information. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FOD_Chapter04.pdf (accessed on 19 February 2023).
- Zachariah, M.; Arulalan, T.; AchutaRao, K.; Saeed, F.; Jha, R.; Dhasmana, M.; Mondal, A.; Bonnet, R.; Vautard, R.; Philip, S. Climate Change Made Devastating Early Heat in India and Pakistan 30 Times More Likely. World Weather Attrib. 2022. Available online: https://www.worldweatherattribution.org/wp-content/uploads/India_Pak-Heatwave-scientific-report.pdf (accessed on 19 February 2023).
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Banerjee, S.; Middel, A.; Chattopadhyay, S. Outdoor thermal comfort in various microentrepreneurial settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective parameters. Sci. Total. Environ. 2020, 721, 137741. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Das, A.; Mandal, S. Outdoor thermal comfort in different settings of a tropical planning region of Eastern India by adopting LCZs approach: A case study on Sriniketan-Santiniketan Planning Area (SSPA). Sustain. Cities Soc. 2020, 63, 102433. [Google Scholar] [CrossRef]
- Sen, J.; Nag, P.K. Human susceptibility to outdoor hot environment. Sci. Total. Environ. 2018, 649, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Ziaul, S.; Pal, S. Assessing outdoor thermal comfort of English Bazar Municipality and its surrounding, West Bengal, India. Adv. Space Res. 2019, 64, 567–580. [Google Scholar] [CrossRef]
- De, B.; Mukherjee, M. Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India. Urban Clim. 2018, 24, 887–920. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Biswas, G.; Guha, R.; Pal, S.; Dey, S. On the variation of summer thermal stress over Kolkata from 1995 to 2009. VAYU MANDAL 2010, 35–36, 16–21. [Google Scholar]
- Rao, K.K.; Kumar, T.V.L.; Kulkarni, A.; Ho, C.-H.; Mahendranath, B.; Desamsetti, S.; Patwardhan, S.; Dandi, A.R.; Barbosa, H.; Sabade, S. Projections of heat stress and associated work performance over India in response to global warming. Sci. Rep. 2020, 10, 16675. [Google Scholar] [CrossRef]
- IMD. Climate of West Bengal. 2008. Available online: https://imdpune.gov.in/library/public/Climate%20of%20WestBengal.pdf (accessed on 19 February 2023).
- Bal, S.; Matzarakis, A. Temporal analysis of thermal bioclimate conditions between Kolkata (India) and its three neighbouring suburban sites. Theor. Appl. Clim. 2022, 148, 1545–1562. [Google Scholar] [CrossRef]
- Sanjay, J.; Krishnan, R.; Shrestha, A.B.; Rajbhandari, R.; Ren, G.-Y. Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv. Clim. Chang. Res. 2017, 8, 185–198. [Google Scholar] [CrossRef]
- Chi, X.; Cubasch, U.; Sodoudi, S. Assessment of human bio-meteorological environment over the Tibetan Plateau region based on CORDEX climate model projections. Theor. Appl. Clim. 2019, 137, 893–907. [Google Scholar] [CrossRef]
- Lokys, H.L.; Junk, J.; Krein, A. Future Changes in Human-Biometeorological Index Classes in Three Regions of Luxembourg, Western-Central Europe. Adv. Meteorol. 2015, 2015, 323856. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- VDI. Part I: Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level; Part I: Climate; Beuth: Berlin, Germany, 1998; Volume 3787. [Google Scholar]
- Ndetto, E.L.; Matzarakis, A. Basic analysis of climate and urban bioclimate of Dar es Salaam, Tanzania. Theor. Appl. Clim. 2013, 114, 213–226. [Google Scholar] [CrossRef]
- Pecelj, M.; Matzarakis, A.; Vujadinović, M.; Radovanović, M.; Vagić, N.; Đurić, D.; Cvetkovic, M. Temporal Analysis of Urban-Suburban PET, mPET and UTCI Indices in Belgrade (Serbia). Atmosphere 2021, 12, 916. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N.; Dudek, S. Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustain. Cities Soc. 2016, 22, 136–145. [Google Scholar] [CrossRef]
- Tsitoura, M.; Tsoutsos, T.; Daras, T. Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Convers. Manag. 2014, 86, 250–258. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2007, 52, 281–290. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khan, A.; Dinda, A.; Mithun, S.; Khatun, R.; Akbari, H.; Kusaka, H.; Mitra, C.; Bhatti, S.S.; Van Doan, Q.; et al. Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands. Sci. Total. Environ. 2018, 663, 610–631. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Gupta, K. Exploring the spatial pattern of urban heat island formation in relation to land transformation: A study on a mining industrial region of West Bengal, India. Remote Sens. Appl. Soc. Environ. 2021, 23, 100581. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Modelling urban cooling island impact of green space and water bodies on surface urban heat island in a continuously developing urban area. Model. Earth Syst. Environ. 2018, 4, 501–515. [Google Scholar] [CrossRef]
- Dhar, R.B.; Chakraborty, S.; Chattopadhyay, R.; Sikdar, P.K. Impact of Land-Use/Land-Cover Change on Land Surface Temperature Using Satellite Data: A Case Study of Rajarhat Block, North 24-Parganas District, West Bengal. J. Indian Soc. Remote Sens. 2019, 47, 331–348. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Khan, A.; Chatterjee, S. Numerical simulation of urban heat island intensity under urban–suburban surface and reference site in Kolkata, India. Model. Earth Syst. Environ. 2016, 2, 71. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, B.; Weitz, C.A.; Das, K. Indoor heat conditions measured in urban slum and rural village housing in West Bengal, India. Build. Environ. 2021, 191, 107567. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 2002. [Google Scholar]
- Rani, S.I.; Arulalan, T.; George, J.P.; Rajagopal, E.N.; Renshaw, R.; Maycock, A.; Barker, D.M.; Rajeevan, M. IMDAA: High Resolution Satellite-era Reanalysis for the Indian Monsoon Region. J. Clim. 2021, 34, 5109–5133. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Matzarakis, A.; Laschewski, G.; Muthers, S. The Heat Health Warning System in Germany—Application and Warnings for 2005 to 2019. Atmosphere 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Krüger, E.; Drach, P.; Emmanuel, R.; Corbella, O. Urban heat island and differences in outdoor comfort levels in Glasgow, UK. Theor. Appl. Clim. 2013, 112, 127–141. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631, 390–406. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Humphreys, M. Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy Build. 2019, 198, 149–159. [Google Scholar] [CrossRef]
Sl. No. | Station | Abbreviated Station Code | Longitude | Latitude | Altitude (m) |
---|---|---|---|---|---|
1. | Digha | DGH | 87.50° E | 21.62° N | 6 |
2. | Diamond Harbour | DHR | 88.20° E | 22.17° N | 4 |
3. | Canning | CAN | 88.67° E | 22.25° N | 4 |
4. | Baruipur | BRP | 88.44° E | 22.38° N | 9 |
5. | Alipore (Kolkata) | KOL | 88.32° E | 22.52° N | 6 |
6. | Dum Dum | DMM | 88.45° E | 22.63° N | 6 |
7. | Kharagpur | KGP | 87.32° E | 22.32° N | 61 |
8. | Chinsurah | CNH | 88.44° E | 22.90° N | 200 |
9. | Krishnanagar | KNG | 88.49° E | 23.41° N | 14 |
10. | Sriniketan | SRN | 87.70 ° E | 23.63° N | 59 |
11. | Asansol | ASN | 86.95° E | 23.67° N | 111 |
12. | Birbhum | BRM | 87.59° E | 23.81° N | 71 |
13. | Malda | MLD | 88.12° E | 25.02° N | 31 |
14. | Siliguri | SGR | 88.43° E | 26.48° N | 122 |
15. | Darjeeling | DRJ | 88.27° E | 27.05° N | 2128 |
IMD | 0830 h | ERA5 | 0830 h | IMDAA | 0830 h | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Station | Minimum | Maximum | Mean | Minimum | Maximum | Mean | Minimum | Maximum | Mean |
Temperature (°C) | Alipore (Kolkata) | 14 | 33.4 | 25.9 | 14.1 | 34.2 | 25.9 | 13.6 | 35.3 | 25.9 |
Diamond Harbour | 14 | 34 | 25.8 | 14.3 | 34.5 | 26.2 | 15.1 | 33.9 | 26.6 | |
Darjeeling | 2.4 | 30.2 | 13.3 | 7.3 | 27.7 | 18.6 | 8.4 | 28.4 | 19 | |
Relative Humidity (%) | Alipore (Kolkata) | 40 | 100 | 78.6 | 41 | 100 | 78.7 | 37.4 | 99.3 | 76.7 |
Diamond Harbour | 57 | 100 | 87 | 41.2 | 100 | 79.5 | 36.8 | 99.5 | 76.6 | |
Darjeeling | 39 | 100 | 85.6 | 41.5 | 100 | 79.5 | 44.7 | 98.1 | 78.3 | |
Wind Speed (ms−1) | Alipore (Kolkata) | 0 | 4.6 | 1.2 | 0.1 | 9.3 | 2.5 | 0.1 | 9.2 | 2.6 |
Diamond Harbour | 0 | 5.1 | 0.2 | 0.1 | 9.1 | 2.6 | 0.1 | 12.8 | 3.5 | |
Darjeeling | 0 | 0.1 | 0.04 | 0 | 2.4 | 0.7 | 0.1 | 2.5 | 1 | |
Cloud Cover (Octas) | Alipore (Kolkata) | 0 | 8 | 3.8 | 0 | 8 | 1.6 | 0 | 7.9 | 0.8 |
Diamond Harbour | 0 | 8 | 3.8 | 0 | 8 | 1.8 | 0 | 7.8 | 0.7 | |
Darjeeling | 0 | 8 | 4.2 | 0 | 8 | 2.9 | 0 | 8 | 1.5 | |
PET (°C) | Alipore (Kolkata) | 12.5 | 48.1 | 33.1 | 12.7 | 45 | 30 | 10.5 | 43.4 | 29.9 |
Diamond Harbour | 11.5 | 51.1 | 35.8 | 12.8 | 45.7 | 30.2 | 10.9 | 44.6 | 29.9 | |
Darjeeling | 2.1 | 46.4 | 22.9 | 5.3 | 42.8 | 25.5 | 4 | 41.7 | 23.4 |
IMD | 1430 h | ERA5 | 1430 h | IMDAA | 1430 h | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Station | Minimum | Maximum | Mean | Minimum | Maximum | Mean | Minimum | Maximum | Mean |
Temperature (°C) | Alipore (Kolkata) | 17.4 | 39.0 | 30.2 | 18.2 | 39.5 | 30.8 | 17.5 | 41.0 | 30.9 |
Diamond Harbour | 17.6 | 37.6 | 30.5 | 18.2 | 39.2 | 30.8 | 16.7 | 39.6 | 30.0 | |
Darjeeling | 5.0 | 25.0 | 16.2 | 9.5 | 29.4 | 22.1 | 10.2 | 28.6 | 21.3 | |
Relative Humidity (%) | Alipore (Kolkata) | 19.0 | 99.0 | 60.8 | 16.8 | 95.9 | 60.5 | 11.8 | 93.8 | 54.2 |
Diamond Harbour | 28.0 | 100 | 71.5 | 13.9 | 99.5 | 61.4 | 16.2 | 90.8 | 59.3 | |
Darjeeling | 35.0 | 100 | 77.1 | 29.0 | 10 | 73.1 | 28.3 | 99.4 | 72.9 | |
Wind Speed (ms−1) | Alipore (Kolkata) | 0.0 | 17.5 | 1.3 | 0.3 | 12.7 | 2.7 | 0.0 | 7.9 | 0.6 |
Diamond Harbour | 0.0 | 5.7 | 0.4 | 0.2 | 13.9 | 2.8 | 0.4 | 23.9 | 4.1 | |
Darjeeling | 0.0 | 0.1 | 0.04 | 0.1 | 2.5 | 1.3 | 0.1 | 3.5 | 1.7 | |
Cloud Cover (Octas) | Alipore (Kolkata) | 0.0 | 8.0 | 4.2 | 0.0 | 8.0 | 1.4 | 0.0 | 7.9 | 0.6 |
Diamond Harbour | 0.0 | 8.0 | 3.6 | 0.0 | 8.0 | 1.4 | 0.0 | 7.7 | 0.5 | |
Darjeeling | 0.0 | 8.0 | 5.8 | 0.0 | 8.0 | 3.2 | 0.0 | 8.0 | 1.2 | |
PET (°C) | Alipore (Kolkata) | 14.9 | 50.9 | 37.8 | 15.4 | 49.5 | 36.1 | 17.5 | 47.9 | 35.9 |
Diamond Harbour | 21.1 | 52.9 | 41.9 | 16.0 | 50.1 | 36.0 | 12.5 | 48.9 | 33.7 | |
Darjeeling | 5.6 | 40.6 | 28.0 | 9.7 | 40.7 | 25.6 | 5.6 | 40.2 | 24.3 |
Variables | Station at 0830 h | ERA5 | IMDAA | Station at 1430 h | ERA5 | IMDAA |
---|---|---|---|---|---|---|
Temperature (°C) | Alipore (Kolkata) | 0.98 (0.982–0.987) | 0.97 (0.964–0.973) | Alipore (Kolkata) | 0.95 (0.937–0.953) | 0.91 (0.897–0.923) |
Diamond Harbour | 0.99 (0.983–0.987) | 0.96 (0.958–0.969) | Diamond Harbour | 0.92 (0.908–0.931) | 0.88 (0.856–0.892) | |
Darjeeling | 0.97 (0.963–0.973) | 0.90 (0.899–0.927) | Darjeeling | 0.83 (0.804–0.851) | 0.82 (0.787–0.839) | |
Relative Humidity (%) | Alipore (Kolkata) | 0.74 (0.701–0.770) | 0.66 (0.614–0.700) | Alipore (Kolkata) | 0.90 (0.887–0.915) | 0.86 (0.843–0.881) |
Diamond Harbour | 0.59 (0.544–0.641) | 0.50 (0.445–0.557) | Diamond Harbour | 0.84 (0.813–0.859) | 0.82 (0.790–0.840) | |
Darjeeling | 0.40 (0.331–0.456) | 0.43 (0.368–0.490) | Darjeeling | 0.68 (0.641–0.722) | 0.57 (0.520–0.623) | |
Wind Speed (ms−1) | Alipore (Kolkata) | 0.61 (0.559–0.654) | 0.56 (0.506–0.611) | Alipore (Kolkata) | 0.49 (0.427–0.542) | 0.41 (0.347–0.473) |
Diamond Harbour | 0.45 (0.384–0.504) | 0.37 (0.308–0.438) | Diamond Harbour | 0.37 (0.301–0.431) | 0.37 (0.304–0.435) | |
Darjeeling | 0.13 (0.056–0.202) | −0.08 (−0.156–−0.008) | Darjeeling | −0.05 (−0.126–0.025) | −0.269 (−0.339–−0.196) | |
Cloud Cover (Octas) | Alipore (Kolkata) | 0.50 (0.440–0.554) | 0.26 (0.183–0.326) | Alipore (Kolkata) | 0.49 (0.427–0.542) | 0.18 (0.108–0.254) |
Diamond Harbour | 0.49 (0.433–0.546 | 0.30 (0.227–0.364) | Diamond Harbour | 0.54 (0.488–0.594) | 0.24 (0.172–0.314) | |
Darjeeling | 0.57 (0.522–0.622) | 0.18 (0.106–0.251) | Darjeeling | 0.27 (0.200–0.339) | 0.098 (0.021–0.173) | |
PET (°C) | Alipore (Kolkata) | 0.84 (0.817–0.862) | 0.81 (0.780–0.834) | Alipore (Kolkata) | 0.86 (0.834–0.874) | 0.80 (0.769–0.824) |
Diamond Harbour | 0.76 (0.721–0.786) | 0.70 (0.662–0.739) | Diamond Harbour | 0.69 (0.648–0.727) | 0.60 (0.546–0.644) | |
Darjeeling | 0.57 (0.516–0.617) | 0.51 (0.458–0.567) | Darjeeling | 0.58 (0.529–0.630) | 0.52 (0.461–0.573) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bal, S.; Kirchner, I. Future Changes in Thermal Bioclimate Conditions over West Bengal, India, Based on a Climate Model. Atmosphere 2023, 14, 505. https://doi.org/10.3390/atmos14030505
Bal S, Kirchner I. Future Changes in Thermal Bioclimate Conditions over West Bengal, India, Based on a Climate Model. Atmosphere. 2023; 14(3):505. https://doi.org/10.3390/atmos14030505
Chicago/Turabian StyleBal, Sourabh, and Ingo Kirchner. 2023. "Future Changes in Thermal Bioclimate Conditions over West Bengal, India, Based on a Climate Model" Atmosphere 14, no. 3: 505. https://doi.org/10.3390/atmos14030505
APA StyleBal, S., & Kirchner, I. (2023). Future Changes in Thermal Bioclimate Conditions over West Bengal, India, Based on a Climate Model. Atmosphere, 14(3), 505. https://doi.org/10.3390/atmos14030505