The Variations of Outgoing Longwave Radiation in East Asia and Its Influencing Factors
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.2. Methods
2.2.1. Exponential Smoothing Methods
2.2.2. Correlation Analysis
2.2.3. Empirical Orthogonal Function
3. Spatiotemporal Variation Characteristics Analysis
3.1. Spatial Variation Analysis
3.1.1. Year-By-Year Spatial Distribution of OLR in the Past 19 Years and 19-Year Average
3.1.2. Seasonal Spatial Variation Distribution of OLR in the Past 19 Years
3.1.3. Average Monthly Spatial Distribution of OLR in the Past 19 Years
3.2. Time Evolution Analysis
3.2.1. OLR Multi-Dimensional and Multi-Angle Analysis
3.2.2. Exponential Smoothing Analysis
3.2.3. Triple-Exponential Smoothing Analysis and Prediction
3.3. Empirical Orthogonal Decomposition (EOF)
4. Relationship between OLR and TCWV, AT, CTP, and CTT
4.1. Spatiotemporal Characteristics Analysis of TCWV, AT, CTP, and CTT
4.2. The Correlation between OLR and Impact Factors
4.3. The Longitude–Latitude Distributions of Correlation between OLR and Impact Factors
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Zhang, Y.; Del Genio, A.; Schmidt, G.; Kelley, M. Cloud scattering impact on thermal radiative transfer and global longwave radiation. J. Quant. Spectrosc. Radiat. Transf. 2019, 239, 106669. [Google Scholar] [CrossRef]
- Karpowicz, B.M.; Mccarty, W.; Wargan, K. Investigating the Utility of Hyperspectral Sounders in the 9.6 μm Band to Improve Ozone Analyses. In Proceedings of the 17th Joint Center for Satellite Data Assimilation Technical Review Meeting and Science Workshop, Washington, DC, USA, 29–31 May 2019. [Google Scholar]
- Jing, F.; Zhang, L.; Singh, R.P. Pronounced Changes in Thermal Signals Associated with the Madoi (China) M 7.3 Earthquake from Passive Microwave and Infrared Satellite Data. Remote Sens. 2022, 14, 2539. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, L.; Tan, C.; Divakarla, M.; Pryor, K.; Warner, J.; Wei, Z.; Goldberg, M.; Nalli, N.R. Validation of Near-Real-Time NOAA-20 CrIS Outgoing Longwave Radiation with Multi-Satellite Datasets on Broad Timescales. Remote Sens. 2021, 13, 3912. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Lee, K.-T. Using the Himawari-8 AHI Multi-Channel to Improve the Calculation Accuracy of Outgoing Longwave Radiation at the Top of the Atmosphere. Remote Sens. 2019, 11, 589. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.S.; Vera, C.S.; Kiladis, G.N. MJO Modulating the Activity of the Leading Mode of Intraseasonal Variability in South America. Atmosphere 2017, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Viana, L.P.; Manco, J.A.A.; Herdies, D.L. Dynamic Characteristics of the Circulation and Diurnal Spatial Cycle of Outgoing Longwave Radiation in the Different Phases of the Madden–Julian Oscillation during the Formation of the South Atlantic Convergence Zone. Atmosphere 2021, 12, 1399. [Google Scholar] [CrossRef]
- Dewitte, S.; Clerbaux, N. Decadal Changes of Earth’s Outgoing Longwave Radiation. Remote Sens. 2018, 10, 1539. [Google Scholar] [CrossRef] [Green Version]
- Fajary, F.R.; Hadi, T.W.; Yoden, S. Contributing Factors to Spatio-Temporal Variations of Outgoing Longwave Radiation (OLR) in the Tropics. J. Clim. 2019, 32, 4621–4640. [Google Scholar] [CrossRef]
- You, J.K.; Dong, K.L. Thermal Comfort and Longwave Radiation over Time in Urban Residential Complexes. Sustainability 2019, 11, 2251. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, W.; Chen, W.; Wu, R.; Wang, L. Evaluation of FY-3B Reprocessed OLR Data in the Asian—Australian Monsoon Region during 2011–2019: Comparison with NOAA OLR. J. Meteorol. Res. 2021, 35, 964–974. [Google Scholar] [CrossRef]
- Preusker, R.; Carbajal Henken, C.; Fischer, J. Retrieval of Daytime Total Column Water Vapour from OLCI Measurements over Land Surfaces. Remote Sens. 2021, 13, 932. [Google Scholar] [CrossRef]
- Chedzey, H.; Menzel, W.P.; Lynch, M. Changes in HIRS Detection of Cloud over Australia from 1985 to 2001. Remote Sens. 2021, 13, 917. [Google Scholar] [CrossRef]
- Lao, P.; Liu, Q.; Ding, Y.; Wang, Y.; Li, Y.; Li, M. Rainrate Estimation from FY-4A Cloud Top Temperature for Mesoscale Convective Systems by Using Machine Learning Algorithm. Remote Sens. 2021, 13, 3273. [Google Scholar] [CrossRef]
- Koji, A.K.; Van Malderen, R.; Pottiaux, E.; Van Schaeybroeck, B. Understanding the Present-Day Spatiotemporal Variability of Precipitable Water Vapor over Ethiopia: A Comparative Study between ERA5 and GPS. Remote Sens. 2022, 14, 686. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L. Clues of Ongoing Deep Magma Inflation at Campi Flegrei Caldera (Italy) from Empirical Orthogonal Function Analysis of SAR Data. Remote Sens. 2022, 14, 5698. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, W.; Lu, Y.; Chen, L. Identification and Correlation Analysis of Engineering Environmental Risk Factors along the Qinghai–Tibet Engineering Corridor. Remote Sens. 2022, 14, 908. [Google Scholar] [CrossRef]
- Heng, Z.; Jiang, X. An Assessment of the Temperature and Humidity of Atmospheric Infrared Sounder (AIRS) v6 Profiles Using Radiosonde Data in the Lee of the Tibetan Plateau. Atmosphere 2019, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Strow, L.L.; Hepplewhite, C.; Motteler, H.; Buczkowski, S.; DeSouza-Machado, S. A Climate Hyperspectral Infrared Radiance Product (CHIRP) Combining the AIRS and CrIS Satellite Sounding Record. Remote Sens. 2021, 13, 418. [Google Scholar] [CrossRef]
- Qin, H.; Kawamura, H. Atmospheric response to a Hot SST Event in November 2006 as observed by the AIRS instrument. Adv. Space Res. 2009, 3, 395–400. [Google Scholar] [CrossRef]
- Sun, J.; McColl, K.A.; Wang, Y.; Rigden, A.J.; Lu, H.; Yang, K.; Li, Y.; Santanello, J.A., Jr. Global evaluation of terrestrial near-surface air temperature and specific humidity retrievals from the Atmospheric Infrared Sounder (AIRS). Remote Sens. Environ. 2020, 252, 112146. [Google Scholar] [CrossRef]
- Hwang, J.; Son, S.W.; Martineau, P.; Barriopedro, D. Impact of winter blocking on surface air temperature in East Asia: Ural versus Okhotsk blocking. Clim. Dyn. 2022, 59, 2197–2212. [Google Scholar] [CrossRef]
- Kwon, E.H.; Sohn, B.J.; Smith, W.L.; Li, J. Validating IASI Temperature and Moisture Sounding Retrievals over East Asia Using Radiosonde Observations. J. Atmos. Ocean. Technol. 2012, 29, 1250–1262. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Chen, Q.; Wang, Q.; Zhao, S.; Zhou, X.; Peng, J. Water and Ice Cloud Optical Thickness Changes and Radiative Effects in East Asia. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107213. [Google Scholar] [CrossRef]
- Jia, X.; Lv, T.; He, F.; Huang, H. Collaborative Data Downloading by Using Inter-Satellite Links in LEO Satellite Networks. IEEE Trans. Wirel. Commun. 2017, 16, 1523–1532. [Google Scholar] [CrossRef]
- Tang, C.; Liu, D.; Wei, Y.; Tian, X.; Zhao, F.; Wu, X. Spatial-Temporal Mode Analysis and Prediction of Outgoing Longwave Radiation over China in 2002–2021 Based on Atmospheric Infrared Sounder Data. Atmosphere 2022, 13, 400. [Google Scholar] [CrossRef]
- Gustriansyah, R.; Alie, J.; Suhandi, N. Modeling the number of unemployed in South Sumatra Province using the exponential smoothing methods. Qual. Quant. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Huang, L.; Liu, L.; Wu, P.; Qin, X. Applicability Analysis of VTEC Derived from the Sophisticated Klobuchar Model in China. ISPRS Int. J. Geo-Inf. 2017, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Bie, Y.; Li, Z.; Hu, Z.; Chen, J. Queue Management Algorithm for Satellite Networks Based on Traffic Prediction. IEEE Access 2022, 10, 54313–54324. [Google Scholar] [CrossRef]
- Rubio, L.; Gutiérrez-Rodríguez, A.J.; Forero, M.G. EBITDA Index Prediction Using Exponential Smoothing and ARIMA Model. Mathematics 2021, 9, 2538. [Google Scholar] [CrossRef]
- Sun, J.; Ding, K.; Lai, Z.; Huang, H. Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018. Remote Sens. 2022, 14, 859. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, L.; Luo, J.; Tian, L.; Tian, Y.; Chen, G. Characteristics and Influencing Factors of Spatial Differentiation of Market Service Industries in Rural Areas around Metropolises—A Case Study of Wuhan City’s New Urban Districts. ISPRS Int. J. Geo-Inf. 2022, 11, 170. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, F.; Wu, Q.; Han, Q.; Wang, Y.; Zhou, T. Structural Differences of PM2.5 Spatial Correlation Networks in Ten Metropolitan Areas of China. ISPRS Int. J. Geo-Inf. 2022, 11, 267. [Google Scholar] [CrossRef]
- Munagapati, H.; Tiwari, V.M. Spatio-Temporal Patterns of Mass Changes in Himalayan Glaciated Region from EOF Analyses of GRACE Data. Remote Sens. 2021, 13, 265. [Google Scholar] [CrossRef]
- Bril, A.; Maksyutov, S.; Belikov, D.; Oshchepkov, S.; Yoshida, Y.; Deutscher, N.M.; Griffith, D.; Hase, F.; Kivi, R.; Morino, I.; et al. EOF-based regression algorithm for the fast retrieval of atmospheric CO2 total column amount from the GOSAT observations. J. Quant. Spectrosc. Radiat. Transf. 2017, 189, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Letu, H.; Wang, T.; Shi, C.; Zhao, C.; Tana, G.; Naizhuo, Z.; Tie, D.; Ronglin, T.; Huazhe, S.; et al. Estimation of shortwave solar radiation using the artificial neural network from Himawari-8 satellite imagery over China. J. Quant. Spectrosc. Radiat. Transf. 2019, 240, 106672. [Google Scholar] [CrossRef]
- Chae, J.H.; Sherwood, S.C. Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region. J. Atmos. Sci. 2010, 67, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Shawky, M.; Ahmed, M.R.; Ghaderpour, E.; Gupta, A.; Achari, G.; Dewan, A.; Hassan, Q.K. Remote sensing-derived land surface temperature trends over South Asia. Ecol. Inform. 2023, 74, 101969. [Google Scholar] [CrossRef]
- Zhai, D.; Zhang, X.; Xiong, P. Detecting Thermal Anomalies of Earthquake Process Within Outgoing Longwave Radiation Using Time Series Forecasting Models. Ann. Geophys. 2020, 63, PA548. [Google Scholar] [CrossRef]
- Fu, C.C.; Lee, L.C.; Ouzounov, D.; Jan, J.C. Earth’s Outgoing Longwave Radiation Variability Prior to M ≥6.0 Earthquakes in the Taiwan Area During 2009–2019. Front. Earth Sci. 2020, 8, 15. [Google Scholar] [CrossRef]
- Su, B.; Li, H.; Ma, W.; Jing, Z.; Qi, Y.; Jing, C.; Yue, C.; Kang, C. The Outgoing Longwave Radiation Analysis of Medium and Strong Earthquakes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6962–6973. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, L.; Liu, Q.; Chyi, D. Environmental Factors Controlling the Precipitation in California. Atmosphere 2021, 12, 997. [Google Scholar] [CrossRef]
- Wie, J.; Park, H.-J.; Lee, H.; Moon, B.-K. Near-Surface Ozone Variations in East Asia during Boreal Summer. Atmosphere 2020, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Yadav, J.; Mohan, R. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Sci. Total Environ. 2020, 753, 142046. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zheng, Z.; Gu, D.; Lin, A. Asymmetric effects of atmospheric circulation on the South China Sea summer monsoon onset. Dyn. Atmos. Ocean. 2019, 87, 101099. [Google Scholar] [CrossRef]
- Chaudhari, H.S.; Hazra, A.; Pokhrel, S.; Chakrabarty, C.; Saha, S.K.; Sreenivas, P. SST and OLR relationship during Indian summer monsoon: A coupled climate modelling perspective. Meteorol. Atmos. Phys. 2018, 130, 211–225. [Google Scholar] [CrossRef]
- Feng, X.; Fan, F. Role of Local Air-Sea Interaction in a Significant Correlation of Convective Activity in the Western Pacific Warm Pool between June and August. J. Meteorol. Soc. Japan. Ser. II 2019, 97, 955–1008. [Google Scholar] [CrossRef]
- Ye, H.; Guo, H.; Liu, G.; Ping, J.; Zhang, L.; Zhang, Y. Estimating the Earth’s Outgoing Longwave Radiation Measured from a Moon-Based Platform. Remote Sens. 2021, 13, 2201. [Google Scholar] [CrossRef]
- Dastour, H.; Ghaderpour, E.; Zaghloul, M.S.; Farjad, B.; Gupta, A.; Eum, H.; Achari, G.; Hassan, Q.K. Wavelet-based spatiotemporal analyses of climate and vegetation for the Athabasca river basin in Canada. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103044. [Google Scholar] [CrossRef]
Mode | EOF1 | EOF2 | EOF3 | EOF4 |
---|---|---|---|---|
Variance contribution | 43.29% | 16.72% | 5.22% | 4.94% |
Cumulative variance | 43.29% | 60.01% | 65.23% | 70.17% |
PC | 2003~2021 Linear Trend | 2003~2012 Linear Trend | 2013~2021 Linear Trend |
---|---|---|---|
PC1 | y = −0.01222x + 24.58 | y = 0.1891x − 379.3 | y = 0.03597x − 72.84 |
PC2 | y = −0.06419x + 129.2 | y = −0.208x + 417.7 | y = −0.04182x + 84.16 |
PC3 | y = −0.03616x + 72.76 | y = 0.08142x − 163.3 | y = −0.1645x + 331.7 |
PC4 | y = −0.07497x + 150.8 | y = 0.1014x − 203.1 | y = −0.1257x + 253.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.; Liu, D.; Tian, X.; Zhao, F.; Dai, C. The Variations of Outgoing Longwave Radiation in East Asia and Its Influencing Factors. Atmosphere 2023, 14, 576. https://doi.org/10.3390/atmos14030576
Tang C, Liu D, Tian X, Zhao F, Dai C. The Variations of Outgoing Longwave Radiation in East Asia and Its Influencing Factors. Atmosphere. 2023; 14(3):576. https://doi.org/10.3390/atmos14030576
Chicago/Turabian StyleTang, Chaoli, Dong Liu, Xiaomin Tian, Fengmei Zhao, and Congming Dai. 2023. "The Variations of Outgoing Longwave Radiation in East Asia and Its Influencing Factors" Atmosphere 14, no. 3: 576. https://doi.org/10.3390/atmos14030576
APA StyleTang, C., Liu, D., Tian, X., Zhao, F., & Dai, C. (2023). The Variations of Outgoing Longwave Radiation in East Asia and Its Influencing Factors. Atmosphere, 14(3), 576. https://doi.org/10.3390/atmos14030576