The Source Apportionment of Heavy Metals in Surface Dust in the Main District Bus Stops of Tianshui City Based on the Positive Matrix Factorization Model and Geo-Statistics
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sample Collection and Analysis
2.3. Methods
2.3.1. The Geoaccumulation Index
2.3.2. Potential Ecological Risk Index
2.4. PMF
2.5. The Geostatistical Method
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistical of Heavy Metal Concentrations
3.2. A Spatial Distribution of Heavy Metals
3.3. The Pollution Assessment of Heavy Metals
4. Discussion
4.1. The Correlation Analysis
4.2. The Quantitative Source with the PMF
4.3. Limitations and Impacts
5. Conclusions
- (1)
- The sampling points exceeding the rate of Cu, Zn, Sr, Ba, and Pb were 100%. Cr, Ni, and As were 96.15%, 94.23% and 96.15%, respectively. The high-value areas of Pb, Zn, Ni, and As were mainly distributed in the eastern part of the study area. The high values of Cu, Sr, Ba, and Cr showed a spot-like distribution pattern, while Mn, Co, and V did not contaminate the study area.
- (2)
- The Igeo results showed that As, Cu, Zn, and Pb were the main contamination factors. The RI was a serious ecological risk, with Pb, As, and Cu as the main ecological factors. The RI of 54% of the samples was a moderate ecological risk, 40% of samples were a serious ecological risk, and only 6% of samples were an extremely serious ecological risk.
- (3)
- The PMF source analysis results showed that natural sources accounted for 18.33%, the proportion of mixed pollution sources from transportation and industrial alloy manufacturing was 26.99%, the construction waste pollution sources accounted for 17.17%, and the coal-traffic mixed pollution sources accounted for 37.52%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Day, J.P.; Hart, M.; Robinson, M.S. Lead in urban street dust. Nature 1975, 253, 343–345. [Google Scholar] [CrossRef]
- Kolesar, K.R.; Schaaf, M.D.; Bannister, J.W.; Schreuder, M.D.; Heilmann, M.H. Characterization of potential fugitive dust emissions within the Keeler Dunes, an inland dune field in the Owens Valley, California, United States. Aeolian Res. 2021, 54, 100765. [Google Scholar] [CrossRef]
- Shi, D.; Lu, X.; Xu, X.; Han, X. Study on heavy metal pollution and sources of suspended dust on roads in Baotou city. Environ. Sci. Technol. 2019, 42, 16–23. [Google Scholar]
- Wu, F.; Kong, S.; Yan, Q.; Wang, W.; Liu, H.; Wu, J.; Zheng, H.; Zheng, S.; Cheng, Y.; Niu, Z.; et al. Sub-type source profiles of fine particles for fugitive dust and accumulative health risks of heavy metals: A case study in a fast-developing city of China. Environ. Sci. Pollut. Res. 2020, 27, 16554–16573. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, X.W.; Li, L.Y.; Gao, T.; Chang, Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total Environ. 2014, 484, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Feng, L.N.; Huang, C.C.; Yan, X.Y.; Zhang, X. Chemical characteristics of atmospheric fallout in the south of Xi’an during the dust episodes of 2001–2012 (NW China). Atmos. Environ. 2014, 83, 109–118. [Google Scholar] [CrossRef]
- Tang, R.L.; Ma, K.M.; Zhang, Y.X.; Mao, Q. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Appl. Geochem. 2013, 35, 88–98. [Google Scholar] [CrossRef]
- Bucse, A.; Dan, V.; Balan, S.; Parvulescu, O.C.; Dobre, T. Heavy metalspatial distribution and pollution assessment in the surface sediments of the north western black sea shelf. Rev. Chim. Buchar. Orig. Ed. 2020, 71, 155–170. [Google Scholar] [CrossRef]
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma 2013, 211–212, 8–17. [Google Scholar] [CrossRef]
- Lee, P.; Youm, S.; Jo, H.Y. Heavy metal concentrations and contamination levels from Asian dust and identification of sources: A case-study. Chemosphere 2013, 91, 1018–1025. [Google Scholar] [CrossRef]
- Kelly, F.J.; Zhu, T. Transport solutions for cleaner air. Science 2016, 352, 934–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahab, M.I.A.; Abd Razak, W.M.A.; Sahani, M.; Khan, M.F. Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur. Sci. Total Environ. 2020, 703, 135535. [Google Scholar] [CrossRef]
- Duong, T.T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef]
- Li, H.; Shi, A.; Zhang, X. Particle size distribution and characteristics of heavy metals in road-deposited sediments from beijing olympic park. J. Environ. Sci. 2015, 32, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhou, J.; Hu, B.; Wang, Z.; Meng, W.; Wang, Z. Characteristics of heavy metal pollution in urban street dust of Tianjin. Ecol. Environ. Sci. 2014, 23, 157–163. [Google Scholar]
- Wang, K.; Zuo, S.; Li, K.; Hua, Z.; Chen, L.; He, Y. Bioaccessibility and health risk assessment of heavy metals in the dusts in bus stops in Shijiazhuang City. Sci. Technol. Eng. 2020, 20, 14737–14742. [Google Scholar]
- Zheng, X.; Zhao, W.; Yan, X.; Shu, T.; Xiong, Q.; Chen, F. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations. Int. J. Environ. Res. Public Health 2015, 12, 9658–9671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, Z.; Zhang, Y.; Chen, Z. Concentrations, Sources and health risk assessments of heavy metals in ground surface dust from urban bus terminals of Fuzhou City. Res. Environ. Sci. 2013, 26, 906–912. [Google Scholar]
- Li, H.Y.; Zhang, Q.; Chen, C.R.; Wang, L.T.; Wei, Z.; Zhou, S.; Parworth, C.; Zheng, B.; Canonaco, F.; Prévôt, A.S.H.; et al. Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion. Atmos. Chem. Phys. 2017, 17, 4751–4768. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Liao, B.T.; Wu, M.; Chen, H.Z.; Wang, Y.C.; Liao, X.N.; Sun, D. The long-term trend of haze and fog days and the surface layer transport conditions under haze weather in North China. Acta Sci. Circumstantiae 2014, 34, 1–11. [Google Scholar]
- Kim, S.; Kim, T.-Y.; Yi, S.-M.; Heo, J. Source apportionment of PM2.5 using positive matrix factorization (PMF) at a rural site in Korea. J. Environ. Manag. 2018, 214, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Wang, Y.; Wang, X.; Ma, L.; Cheng, Z.; Su, L.; Liu, M. Quantitative source apportionment of heavy metals in cultivated soil and associated model uncertainty. Ecotoxicol. Environ. Saf. 2021, 215, 112150. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Luo, H. Source apportionment of heavy metals in agricultural soil based on pmf: A case study in hexi corridor, northwest china. Chemosphere 2017, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, S.; Liu, K.; Wang, G.; Wang, J. Application of apca-mlr receptor model for source apportionment of char and soot in sediments. Sci. Total Environ. 2020, 746, 141165. [Google Scholar] [CrossRef]
- Lu, X.; Hu, W.; Huang, B.; Zu, Y.; Zhan, F.; Kuang, R. Source apportionment of heavy metals in farmland soils around mining area based on unmix model. Environ. Sci. 2017, 39, 1421–1429. [Google Scholar]
- Hu, M.; Li, C.; Li, N.; Ji, T.; Zheng, D. Using the matter-element extension model to assess heavy metal pollution in topsoil in parks in the main district park of lanzhou city. J. Environ. Sci. 2021, 42, 2457–2468. [Google Scholar]
- Webster, R.; Oliver, M.A. Statistics for earth and environmental scientists. In Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wang, Y.Q.; Bai, Y.R.; Wang, J.Y. Distribution of soil heavy metal and pollution evaluation on the different sampling scales in farmland on yellow river irrigation area of Ningxia: A case study in Xingqing county of Yinchuan city. Environ. Sci. 2014, 35, 2714. [Google Scholar]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the chinese loess plateau. Sci. Total Environ. 2018, 650, 2004–2012. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Yang, H.; Wang, F.; You, X.; Zhang, M.; Zhang, X.; Zhou, Q. Study on atmospheric particulate matter transport channel and pollution source area in Tianshui City. Environ. Chem. 2020, 9, 2371–2383. [Google Scholar]
- Wei, B.G.; Jiang, F.Q.; Li, X.M.; Mu, S.Y. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchem. J. 2009, 93, 147–152. [Google Scholar] [CrossRef]
- Wei, B.G.; Yang, L.S. A review of heavy metal contamination in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the rhine river. GeoJournal 1969, 2, 109–118. [Google Scholar]
- Zhang, Z.; Shao, T.; Wei, P. Assessment of heavy metal pollution and potential ecological hazards in atmospheric dust in kaifeng city. J. Arid Land Resour. Environ. 2019, 33, 156–162. [Google Scholar]
- Zhang, Z.; Abuduwaili, J.; Jiang, F. Heavy metal contamination, sources, and pollution assessment of surface water in the tianshan mountains of china. Environ. Monit. Assess. 2015, 187, 4191. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, R.; Liang, Y.; Dang, Y. Pollution Characteristic and Ecological Risk Evaluation of Heavy Metals in Duliu River; Pearl River: Neshoba County, MI, USA, 2016. [Google Scholar]
- Xu, X.; Zhang, X.; Peng, Y.; Li, R.; Zhao, Y. Spatial distribution and source apportionment of agricultural soil heavy metals in a rapidly developing area in east china. Bull. Environ. Contam. Toxicol. 2021, 106, 33–39. [Google Scholar] [CrossRef]
- Wu, J.; Fang, F.; Yao, Y. Bioaccessibility and spatial distribution of heavy metals in dust from different activity areas of elementary schools in Huainan City. Acta Sci. Circumstantiae 2017, 37, 1287–1296. [Google Scholar]
- Xiang, L.; Li, Y.; Shi, J. Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing. Environ. Sci. 2010, 31, 159–167. [Google Scholar]
- Wang, G.; Chen, Y.; Xia, D. Magnetic property of urban topsoil and its implication of heavy metal pollution in Shanghai. Acta Sci. Circumstantiae 2018, 38, 3302–3312. [Google Scholar]
- Shi, D.; Lu, X. Contamination levels and source analysis of heavy metals in the Finer particles of urban road dust from Xi’an, China. Environ. Sci. 2018, 39, 3126–3133. [Google Scholar]
- Zhang, H.; Ren, Q.; Wei, J. Analysis on the heavy metal pollutants in atmospheric dust in different regions of Urumqi and its sources apportionment. Environ. Pollut. Control 2014, 36, 19–23. [Google Scholar]
- Guo, W.; Sun, W.; Zhao, R. Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Hohhot. Environ. Sci. 2013, 34, 1561–1567. [Google Scholar]
- Fergusson, J.E.; Ryan, D.E. The elemental composition of street dust from large and small urban areas related to city type, source and particle size. Sci. Total Environ. 1984, 34, 101–116. [Google Scholar] [CrossRef]
- Wang, T.; Wang, G. Spatial distribution of water quality parameters in lake Kuncheng. Acta Sci. Circumstantiae 2007, 27, 1384–1390. [Google Scholar]
- Wilson, M.J. Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Miner. 2004, 39, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Lu, W.; Liu, X.; Xin, X. Heavy metal identification for near-surface urban dust in Changchun city. J. Arid Land Resour. Environ. 2010, 24, 155–160. [Google Scholar]
- Yalcin, M.G.; Battaloglu, R.; Ilhan, S. Heavy metal sources in sultan marsh and its neighborhood, Kayseri, Turkey. Environ. Geol. 2007, 53, 399–415. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Xu, D.; He, T.; Nie, C. Characteristics of heavy metal pollution and health risk assessment in subway dust in beijing. China Environ. Sci. 2011, 31, 944–950. [Google Scholar]
- Yang, Y.; Yan, H.; Mude, M. Characteristic and evaluation of soil pollution by heavy metal in different greenbelts of Hohhot. North. Hortic. 2019. [Google Scholar]
- Gasmi, T.; Khouni, I.; Ghrabi, A. Assessment of heavy metals pollution using multivariate statistical analysis methods in wadi el bey (Tunisia). Desalination Water Treat. 2016, 57, 22152–22165. [Google Scholar] [CrossRef]
- Pereira, P.; Vieira, C.; Lopes, M. Characterization of Construction and Demolition Wastes (C&DW)/Geogrid Interfaces; Taylor & Francis: London, UK, 2015. [Google Scholar]
- Wei, X.; Wu, P.; Zhang, H.; Fan, M.; Gao, C. Spatial distribution and source identification of heavy metals in soils on the alluvial islands in the Anhui section of Yangtze river. Acta Sci. Circumstantiae 2017, 37, 1921–1930. [Google Scholar]
- Chen, L.; Zhou, S.; Wu, S.; Wang, C.; Li, B.; Li, Y. Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil. Chemosphere 2018, 204, 140. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Tao, D.; Wang, G.; Li, Q.; Jiang, M. Structure of international iron flow: Based on substance flow analysis and complex network. Resour. Conserv. Recycl. 2018, 136, 345–354. [Google Scholar] [CrossRef]
- Swab, C.; Lmcab, C.; Hhw, D.; Jie, L.A.; Qsw, A.; Xie, L.A. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong province, china. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar]
- Zheng, Y.; Song, B.; Chen, T.; Zheng, G.; Huang, Z. Zinc accumulation and pollution risk in soils under different land use types in Beijing. J. Nat. Res. 2006, 21, 64–72. [Google Scholar]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.G.P.W.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest china. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Zhu, F.; Sun, Q. Distribution characteristics and pollution assessment of heavy metals in sediments of Zhushan bay. IOP Conf. Ser. Earth Environ. Sci. 2019, 358, 022025. [Google Scholar] [CrossRef] [Green Version]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol. Indic. 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Mi, W.X.; Xie, B. Research on reducing the pollutants in urban surface runoff by the urban Greenland. Shanghai Chem. Ind. 2007, 32, 2. [Google Scholar]
- Jrlskog, I.; Strmvall, A.M.; Magnusson, K.; Galfi, H.; Andersson-Skld, Y. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Walker, T.R.; Wang, Y.; Wang, X. Distribution characteristics, chemical speciation and human health risk 1 assessment of metals in surface dust in Shenyang city, China. Appl. Geochem. 2021, 131, 105031. [Google Scholar] [CrossRef]
Horizontal Dimension | Cu | Zn | Mn | Co | Sr | Ba | Pb | V | Cr | Ni | As |
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 28.36 | 174.17 | 439.81 | 6.27 | 221.30 | 478.20 | 49.68 | 50.03 | 57.10 | 18.87 | 11.00 |
Max | 121.57 | 4391.3 | 610.05 | 12.08 | 450.21 | 1289.63 | 807.07 | 72.10 | 177.85 | 66.94 | 47.29 |
Mean | 52.11 | 540.78 | 530.72 | 8.02 | 262.94 | 598.09 | 166.48 | 60.41 | 89.24 | 27.79 | 18.95 |
Standard deviation | 18.37 | 698.20 | 37.13 | 0.96 | 42.54 | 112.25 | 146.86 | 4.66 | 25.60 | 7.64 | 6.78 |
Coefficientofvariation(%) | 35 | 129 | 7 | 12 | 16 | 19 | 88 | 8 | 29 | 27 | 36 |
Excessive Rate (%) | 100 | 100 | 0 | 0 | 100 | 100 | 100 | 0 | 96.15 | 94.23 | 96.15 |
Background Value [35] | 23.4 | 67.0 | 644 | 12.4 | 187 | 440 | 17.9 | 81.9 | 69.3 | 34.4 | 11.7 |
City | Cu | Zn | Mn | Co | Pb | V | Cr | Ni | As |
---|---|---|---|---|---|---|---|---|---|
Huainan [39] | 42.55 | — | — | 11.09 | 97.21 | — | 80.15 | 23.99 | — |
Beijing [40] | 78.30 | 248.50 | — | — | 69.60 | — | 85.00 | 41.10 | — |
Shanghai [41] | 186.40 | 687.30 | 765.19 | — | 212.90 | — | 218.90 | 64.90 | — |
Xi’an [42] | 46.60 | 169.20 | 337.60 | 9.80 | 97.40 | 57.10 | 177.50 | 29.30 | — |
Urumqi [43] | 59.05 | 806.00 | 403.00 | — | 33.94 | — | 66.05 | 48.79 | 151.50 |
Hohhot [44] | 30.07 | 89.93 | 589.42 | — | 11.63 | — | 54.75 | 16.47 | 6.40 |
London [45] | 191.00 | 1176.00 | — | — | 2008 | — | 112.00 | — | — |
New York [45] | 335.00 | 1811.00 | — | — | 2583 | — | — | — | — |
Edinburgh [39] | 57.00 | 213.00 | — | — | 118.00 | — | 16.00 | 15.00 | — |
Amossio [39] | 26.40 | 387.98 | — | — | 36.15 | — | 11.15 | 4.70 | — |
This study | 52.11 | 540.78 | 530.72 | 8.02 | 166.48 | 60.41 | 89.24 | 27.79 | 18.95 |
Element | Theoretical Model | Nugget (C0) | Sill (C0 + C) | [C0/(C0 + C)]%] | Range/m | RSS | R2 |
---|---|---|---|---|---|---|---|
Cu | Spherical | 0.23 | 0.52 | 0.45 | 5500 | 0.014 | 0.912 |
Zn | Exponential | 0.43 | 0.69 | 0.63 | 5356 | 0.072 | 0.814 |
Mn | Exponential | 0.19 | 0.96 | 0.20 | 7500 | 0.057 | 0.842 |
Co | Exponential | 0.06 | 0.59 | 0.11 | 4500 | 0.047 | 0.821 |
Sr | Exponential | 0.24 | 0.61 | 0.40 | 3300 | 0.015 | 0.821 |
Ba | Spherical | 0.31 | 0.67 | 0.46 | 8210 | 0.036 | 0.744 |
Pb | Exponential | 0.20 | 0.59 | 0.34 | 6152 | 0.062 | 0.843 |
V | Spherical | 0.16 | 0.91 | 0.18 | 5100 | 0.027 | 0.752 |
Cr | linear | 0.35 | 0.85 | 0.41 | 2375 | 0.015 | 0.845 |
Ni | linear | 0.30 | 0.86 | 0.35 | 3900 | 0.016 | 0.862 |
As | Spherical | 0.25 | 0.46 | 0.54 | 6230 | 0.025 | 0.840 |
Class | IgeoCu | IgeoZn | IgeoMn | IgeoCo | IgeoSr | IgeoBa | IgeoPb | IgeoV | IgeoCr | IgeoNi | IgeoAs |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.52 | 1.88 | −0.69 | −1.13 | −0.03 | −0.02 | 2.20 | −0.90 | −0.17 | −0.83 | 0.03 |
uncontaminated | 11.54 | 3.85 | 98.08 | 98.08 | 82.69 | 90.38 | 3.85 | 98.08 | 86.54 | 94.23 | 51.92 |
No-moderate contaminated | 76.92 | 11.54 | 0 | 0 | 15.38 | 7.69 | 5.77 | 0 | 11.54 | 3.85 | 44.23 |
Moderate contaminated | 9.62 | 44.23 | 0 | 1.92 | 0 | 0 | 34.62 | 0 | 0 | 0 | 1.92 |
Moderate-serious contaminated | 0 | 30.77 | 0 | 0 | 0 | 0 | 36.54 | 0 | 0 | 1.92 | 0 |
Serious contaminated | 0 | 5.77 | 0 | 0 | 0 | 0 | 13.46 | 0 | 0 | 0 | 1.92 |
Serious-extreme contaminated | 1.92 | 0 | 0 | 0 | 0 | 0 | 3.85 | 1.92 | 1.92 | 0 | 0 |
Extremely contaminated | 0 | 3.85 | 1.92 | 0 | 1.92 | 1.92 | 1.92 | 0 | 0 | 0 | 0 |
Elements | Cu | Zn | Mn | Co | Sr | Ba | Pb | V | Cr | Ni | As | Fe2O3 | MgO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | 1 | ||||||||||||
Zn | 0.27 | 1 | |||||||||||
Mn | 0.04 | 0.34 * | 1 | ||||||||||
Co | −0.11 | −0.22 | 0.08 | 1 | |||||||||
Sr | 0.08 | 0.09 | 0.34 * | 0.09 | 1 | ||||||||
Ba | 0.14 | −0.21 | −0.17 | 0.1 | 0.07 | 1 | |||||||
Pb | 0.16 | 0.74 ** | 0.33 * | −0.30 * | 0.03 | −0.18 | 1 | ||||||
V | −0.30 * | −0.12 | 0.68 ** | 0.22 | 0.17 | −0.05 | −0.05 | 1 | |||||
Cr | 0.18 | −0.09 | −0.22 | 0.67 ** | 0.06 | 0.41 ** | −0.09 | −0.10 | 1 | ||||
Ni | −0.02 | −0.09 | −0.01 | 0.89 ** | 0.20 | 0.03 | −0.14 | 0.03 | 0.66 ** | 1 | |||
As | 0.19 | 0.76 ** | 0.32 * | −0.09 | 0.21 | −0.08 | 0.65 ** | 0.03 | 0.01 | −0.02 | 1 | ||
Fe2O3 | 0.06 | 0.21 | 0.82 ** | 0.69 ** | 0.35 * | 0.30 * | 0.21 | 0.85 ** | 0.47 ** | 0.30 * | 0.35 * | 1 | |
MgO | −0.13 | −0.20 | 0.09 | 0.86 ** | 0.25 | −0.01 | −0.24 | 0.27 | 0.49 ** | 0.75 ** | −0.06 | 0.32 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, X.; Xiao, S.; Wang, H. The Source Apportionment of Heavy Metals in Surface Dust in the Main District Bus Stops of Tianshui City Based on the Positive Matrix Factorization Model and Geo-Statistics. Atmosphere 2023, 14, 591. https://doi.org/10.3390/atmos14030591
Li C, Wang X, Xiao S, Wang H. The Source Apportionment of Heavy Metals in Surface Dust in the Main District Bus Stops of Tianshui City Based on the Positive Matrix Factorization Model and Geo-Statistics. Atmosphere. 2023; 14(3):591. https://doi.org/10.3390/atmos14030591
Chicago/Turabian StyleLi, Chunyan, Xinmin Wang, Shun Xiao, and Hai Wang. 2023. "The Source Apportionment of Heavy Metals in Surface Dust in the Main District Bus Stops of Tianshui City Based on the Positive Matrix Factorization Model and Geo-Statistics" Atmosphere 14, no. 3: 591. https://doi.org/10.3390/atmos14030591
APA StyleLi, C., Wang, X., Xiao, S., & Wang, H. (2023). The Source Apportionment of Heavy Metals in Surface Dust in the Main District Bus Stops of Tianshui City Based on the Positive Matrix Factorization Model and Geo-Statistics. Atmosphere, 14(3), 591. https://doi.org/10.3390/atmos14030591