Apportionment of PM2.5 Sources across Sites and Time Periods: An Application and Update for Detroit, Michigan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Monitoring Sites
2.2. Sample Collection and Data Cleaning
2.3. Descriptive Analyses
2.4. Positive Matrix Factorization
3. Results
3.1. Summary, Seasonal, and Annual Trends
3.2. Comparison of Profiles and PMF Approaches
3.3. Long-Term and Seasonal Apportionments
3.4. Changes during the Pandemic
4. Discussion
4.1. Comparison to the Literature
4.2. Emissions Inventories
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopke, P.K.; Croft, D.; Zhang, W.; Lin, S.; Masiol, M.; Squizzato, S.; Thurston, S.W.; van Wijngaarden, E.; Utell, M.J.; Rich, D.Q. Changes in the acute response of respiratory diseases to PM2.5 in New York State from 2005 to 2016. Sci. Total Environ. 2019, 677, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.F.; Xu, Y.H.; Shi, M.-H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, C.; Tang, X. The Impact of PM2.5 on the Host Defense of Respiratory System. Front. Cell Dev. Biol. 2020, 8, p. 91. Available online: https://www.frontiersin.org/articles/10.3389/fcell.2020.00091 (accessed on 16 December 2022).
- Cooper, J.A.; Watson, J.G. Receptor Oriented Methods of Air Particulate Source Apportionment. J. Air Pollut. Control Assoc. 1980, 30, 1116–1125. [Google Scholar] [CrossRef]
- Watson, J.G. Overview of Receptor Model Principles. J. Air Pollut. Control Assoc. 1984, 34, 619–623. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.; Fujita, E.M.; Wilson, W.E. Receptor modeling application framework for particle source apportionment. Chemosphere 2002, 49, 1093–1136. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.C.; Watson, J.G. Review of PM2.5 and PM10 Apportionment for Fossil Fuel Combustion and Other Sources by the Chemical Mass Balance Receptor Model. Energy Fuels 2002, 16, 222–260. [Google Scholar] [CrossRef]
- Pekney, N.J.; Davidson, C.I.; Robinson, A.; Zhou, L.; Hopke, P.; Eatough, D.; Rogge, W.F. Major Source Categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci. Technol. 2006, 40, 910–924. [Google Scholar] [CrossRef] [Green Version]
- Pekney, N.J.; Davidson, C.I.; Zhou, L.; Hopke, P.K. Application of PSCF and CPF to PMF-Modeled Sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 2006, 40, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-term trends in concentrations and sources of PM2.5–bound metals and elements in central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Zhang, J.; Wang, L.; Yang, J.; Liang, D.; Dai, Q.; Bi, X.; Feng, Y.; Zhang, Y.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef]
- Isley, C.F.; Nelson, P.F.; Taylor, M.P.; Stelcer, E.; Atanacio, A.J.; Cohen, D.D.; Mani, F.S.; Maata, M. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji. Sci. Total Environ. 2018, 612, 450–461. [Google Scholar] [CrossRef]
- Peré-Trepat, E.; Kim, E.; Paatero, P.; Hopke, P.K. Source apportionment of time and size resolved ambient particulate matter measured with a rotating DRUM impactor. Atmos. Environ. 2007, 41, 5921–5933. [Google Scholar] [CrossRef]
- Hwang, I.; Hopke, P.K. Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2. Asian J. Atmos. Environ. 2011, 5, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Duvall, R.M.; Norris, G.A.; Burke, J.M.; Olson, D.A.; Vedantham, R.; Williams, R. Determining spatial variability in PM2.5 source impacts across Detroit, MI. Atmos. Environ. 2012, 47, 491–498. [Google Scholar] [CrossRef]
- Pancras, J.P.; Landis, M.S.; Norris, G.A.; Vedantham, R.; Dvonch, J.T. Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Sci. Total Environ. 2013, 448, 2–13. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. Guideline on Speciated Particulate Monitoring. Report prepared for US Environmental Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV. 1998. Available online: https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf (accessed on 16 December 2022).
- Morishita, M.; Keeler, G.J.; Wagner, J.G.; Marsik, F.J.; Timm, E.J.; Dvonch, J.T.; Harkema, J.R. Pulmonary Retention of Particulate Matter is Associated with Airway Inflammation in Allergic Rats Exposed to Air Pollution in Urban Detroit. Inhal. Toxicol. 2004, 16, 663–674. [Google Scholar] [CrossRef]
- Zhou, J.; Ito, K.; Lall, R.; Lippmann, M.; Thurston, G. Time-Series Analysis of Mortality Effects of Fine Particulate Matter Components in Detroit and Seattle. Environ. Health Perspect. 2011, 119, 461–466. [Google Scholar] [CrossRef]
- Le, H.Q.; Batterman, S.A.; Wirth, J.J.; Wahl, R.L.; Hoggatt, K.J.; Sadeghnejad, A.; Hultin, M.L.; Depa, M. Air pollutant exposure and preterm and term small-for-gestational-age births in Detroit, Michigan: Long-term trends and associations. Environ. Int. 2012, 44, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.C.; Metitiri, E.E.; Mentz, G.B.; Ren, X.; Carpenter, A.R.; Goldsmith, A.M.; Wicklund, K.E.; Eder, B.N.; Comstock, A.T.; Ricci, J.M.; et al. Influence of viral infection on the relationships between airway cytokines and lung function in asthmatic children. Respir. Res. 2018, 19, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, T.C.; Metitiri, E.E.; Mentz, G.B.; Ren, X.; Goldsmith, A.M.; Eder, B.N.; Wicklund, K.E.; Walsh, M.P.; Comstock, A.T.; Ricci, J.M.; et al. Impact of community respiratory viral infections in urban children with asthma. Ann. Allergy Asthma Immunol. 2019, 122, 175–183.e2. [Google Scholar] [CrossRef] [PubMed]
- Wasilevich, E.; Lyon-Callo, S.; Rafferty, A.; Dombkowski, K. Detroit—The Epicenter of Asthma Burden. Epidemiology of Asthma in Michigan. 2008. Available online: https://www.michigan.gov/-/media/Project/Websites/mdhhs/Folder1/Folder72/14_Ch12_Detroit_Epicenter_of_Asthma.pdf (accessed on 12 December 2022).
- Hammond, D.M.; Dvonch, J.T.; Keeler, G.J.; Parker, E.A.; Kamal, A.S.; Barres, J.A.; Yip, F.Y.; Brakefield-Caldwell, W. Sources of ambient fine particulate matter at two community sites in Detroit, Michigan. Atmos. Environ. 2008, 42, 720–732. [Google Scholar] [CrossRef]
- Buzcu-Guven, B.; Brown, S.G.; Frankel, A.; Hafner, H.R.; Roberts, P.T. Analysis and Apportionment of Organic Carbon and Fine Particulate Matter Sources at Multiple Sites in the Midwestern United States. J. Air Waste Manag. Assoc. 2007, 57, 606–619. [Google Scholar] [CrossRef]
- Gildemeister, A.E.; Hopke, P.K.; Kim, E. Sources of fine urban particulate matter in Detroit, MI. Chemosphere 2007, 69, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Milando, C.; Huang, L.; Batterman, S. Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago. Atmos. Environ. 2016, 129, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Census Bureau QuickFacts: United States. 2022. Available online: https://www.census.gov/quickfacts/fact/table/waynecountymichigan,detroitcitymichigan,US/PST045221 (accessed on 26 August 2022).
- Allen Park, MI|Data USA. 2022. Available online: https://datausa.io/profile/geo/allen-park-mi (accessed on 13 February 2023).
- Traffic Volume 2016–2021, Department of Transportation. 2022. Available online: https://gis-mdot.opendata.arcgis.com/search?q=traffic (accessed on 26 August 2022).
- Shah, S.D.; Cocker, D.R.; Miller, J.W.; Norbeck, J.M. Emission Rates of Particulate Matter and Elemental and Organic Carbon from In-Use Diesel Engines. Environ. Sci. Technol. 2004, 38, 2544–2550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Batterman, S. Near-road air pollutant concentrations of CO and PM2.5: A comparison of MOBILE6.2/CALINE4 and generalized additive models. Atmos. Environ. 2010, 44, 1740–1748. [Google Scholar] [CrossRef]
- US EPA. Chemical Speciation Network—Parameters Reported to the Air Quality System (AQS) [Other Policies and Guidance]. 2017. Available online: https://www.epa.gov/amtic/chemical-speciation-network-parameters-reported-air-quality-system-aqs (accessed on 26 August 2022).
- Manousakas, M.; Papaefthymiou, H.; Diapouli, E.; Migliori, A.; Karydas, A.G.; Bogdanovic-Radovic, I.; Eleftheriadis, K. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci. Total Environ. 2017, 574, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; He, X.; Huang, X.H.H.; Griffith, S.M.; Feng, Y.; Zhang, T.; Zhang, Q.; Wu, D.; Yu, J.Z. Impact of Secondary Organic Aerosol Tracers on Tracer-Based Source Apportionment of Organic Carbon and PM 2.5: A Case Study in the Pearl River Delta, China. ACS Earth Space Chem. 2017, 1, 562–571. [Google Scholar] [CrossRef]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hopke, P.K.; Husain, L.; Qureshi, S.; Dutkiewicz, V.A.; Schwab, J.J.; Drewnick, F.; Demerjian, K.L. Sources of fine particle composition in New York city. Atmos. Environ. 2004, 38, 6521–6529. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; US Environmental Protection Agency: Washington, DC, USA, 2014; p. 136. [Google Scholar]
- Birch, M.E. Elemental Carbon (Diesel Particulate): Method 5040. NIOSH Manual of Analytical Methods (NMAM). 1999. Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/5040.pdf (accessed on 27 August 2022).
- Schauer, J.J. Evaluation of elemental carbon as a marker for diesel particulate matter. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Liousse, C.; Cachier, H.; Michel, C.; Guillaume, B.; Grégoire, J.M.; Chiapello, I. Climatology of black and organic carbon particles from 1950 to 2100. EGS-AGU-EUG Joint Assembly. 2003. p. 5212. Available online: https://ui.adsabs.harvard.edu/abs/2003EAEJA.....5212L (accessed on 27 August 2022).
- Hopke, P.K.; Leung, M.; Li, N.; Navasca, C. Block Tensor Decomposition for Source Apportionment of Air Pollution. arXiv. 2011. Available online: https://arxiv.org/abs/1110.4133 (accessed on 13 February 2023).
- Larsen, R.K.; Baker, J.E. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environ. Sci. Technol. 2003, 37, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Rodenburg, L.A. Source identification of atmospheric PCBs in Philadelphia/Camden using positive matrix factorization followed by the potential source contribution function. Atmos. Environ. 2007, 41, 8596–8608. [Google Scholar] [CrossRef]
- Landis, M.S.; Pancras, J.P.; Graney, J.R.; Stevens, R.K.; Percy, K.E.; Krupa, S. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and Spatial Distribution of Inorganic Air Pollution in the Athabasca Oil Sands Region. Dev. Environ. Sci. 2012, 11, 427–467. [Google Scholar] [CrossRef]
- Lee, S.; Liu, W.; Wang, Y.; Russell, A.G.; Edgerton, E.S. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos. Environ. 2008, 42, 4126–4137. [Google Scholar] [CrossRef]
- Jang, M.; Lee, S.; Kamens, R.M. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmos. Environ. 2003, 37, 2125–2138. [Google Scholar] [CrossRef]
- Loftus, C.; Yost, M.; Sampson, P.; Torres, E.; Arias, G.; Breckwich Vasquez, V.; Hartin, K.; Armstrong, J.; Tchong-French, M.; Vedal, S.; et al. Ambient Ammonia Exposures in an Agricultural Community and Pediatric Asthma Morbidity. Epidemiology 2015, 26, 794–801. [Google Scholar] [CrossRef]
- Hansson, K.-M.; Samuelsson, J.; Tullin, C.; Åmand, L.-E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust. Flame 2004, 137, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhu, C.; Tian, H.; Wang, Y.; Zhang, K.; Wu, B.; Liu, X.; Hao, Y.; Liu, W.; Bai, X.; et al. Spatiotemporal Variations of Ambient Concentrations of Trace Elements in a Highly Polluted Region of China. J. Geophys. Res. Atmos. 2019, 124, 4186–4202. [Google Scholar] [CrossRef]
- Bray, C.D.; Strum, M.; Simon, H.; Riddick, L.; Kosusko, M.; Menetrez, M.; Hays, M.D.; Rao, V. An assessment of important SPECIATE profiles in the EPA emissions modeling platform and current data gaps. Atmos. Environ. 2019, 207, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Nagib, S.; Inoue, K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid andror alkaline leaching. Hydrometallurgy 2000, 56, 269–292. [Google Scholar] [CrossRef]
- Andrew Gray, H.; Cass, G.R. Source contributions to atmospheric fine carbon particle concentrations. Atmos. Environ. 1998, 32, 3805–3825. [Google Scholar] [CrossRef]
- Song, X.-H.; Polissar, A.V.; Hopke, P.K. Sources of fine particle composition in the northeastern US. Atmos. Environ. 2001, 35, 5277–5286. [Google Scholar] [CrossRef]
- US EPA. SPECIATE [Other Policies and Guidance]. 2015. Available online: https://www.epa.gov/air-emissions-modeling/speciate (accessed on 12 June 2022).
- King, R.B.; Toma, J. Copper Emissions from a High Volume Air Sampler. No. E-8263. 1975. Available online: https://ntrs.nasa.gov/citations/19750011463 (accessed on 28 August 2022).
- Silva, A.C.T.; Branco, P.T.B.S.; Sousa, S.I.V. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1950. [Google Scholar] [CrossRef]
- Wolff, G.T.; Korsog, P.E. Estimates of the contributions of sources to inhalable particulate concentrations in Detroit. Atmos. Environ. 1985, 19, 1399–1409. [Google Scholar] [CrossRef]
- Wayland, R. DRAFT Guidance for Ozone and Fine Particulate Matter Permit Modeling. US Environmental Protection Agency, 142. 2021. Available online: https://www.epa.gov/system/files/documents/2022-08/2022%20Guidance%20O3%20and%20Fine%20PM%20Modeling.pdf (accessed on 16 December 2022).
- Guerra, S.A.; Olsen, S.R.; Anderson, J.J. Evaluation of the SO2 and NOX offset ratio method to account for secondary PM 2.5 formation. J. Air Waste Manag. Assoc. 2014, 64, 265–271. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Viana, M.; Pandolfi, M.; Minguillón, M.C.; Querol, X.; Alastuey, A.; Monfort, E.; Celades, I. Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmos. Environ. 2008, 42, 3820–3832. [Google Scholar] [CrossRef]
- Henry, R.C.; Kim, B.M. The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0 J.G. Watson, N.F. Robinson, and J.C. Chow. Environ. Softw. 1990, 5, 12. [Google Scholar]
- Keats, A.; Cheng, M.-T.; Yee, E.; Lien, F.-S. Bayesian treatment of a chemical mass balance receptor model with multiplicative error structure. Atmos. Environ. 2009, 43, 510–519. [Google Scholar] [CrossRef]
- Comero, S.; Capitani, L.; Gawlik, B.M. Positive Matrix Factorisation (PMF). In An Introduction to the Chemometric Evaluation of Environmental Monitoring Data Using PMF; European Commission Joint Research Centre, Office for Official Publications of the European Communities: Luxembourg, 2009; p. 58. [Google Scholar]
- Kim, I.S.; Wee, D.; Kim, Y.P.; Lee, J.Y. Development and application of three-dimensional potential source contribution function (3D-PSCF). Environ. Sci. Pollut. Res. 2016, 23, 16946–16954. [Google Scholar] [CrossRef] [PubMed]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Hopke, P.K. Identification of Fine Particle Sources in Mid-Atlantic US Area. Water Air Soil Pollut. 2005, 168, 391–421. [Google Scholar] [CrossRef]
- Sampling Methods for All Parameters|Air Quality System|US EPA. 2022. Available online: https://aqs.epa.gov/aqsweb/documents/codetables/methods_all.html (accessed on 28 August 2022).
Site | Variable | Mean | SD | Min | 25th | Median | 75th | Max |
---|---|---|---|---|---|---|---|---|
Allen Park (N = 693) | PM2.5 | 8.63 | 4.75 | 1.20 | 5.16 | 7.64 | 11.01 | 32.10 |
EC | 0.37 | 0.22 | 0.00 | 0.22 | 0.32 | 0.45 | 2.25 | |
OC | 1.91 | 1.11 | 0.27 | 1.09 | 1.70 | 2.48 | 10.54 | |
NH4+ | 0.51 | 0.61 | 0.00 | 0.12 | 0.30 | 0.66 | 4.17 | |
NO3− | 1.50 | 1.89 | −0.03 | 0.35 | 0.77 | 1.86 | 12.36 | |
SO42− | 1.03 | 0.64 | 0.00 | 0.58 | 0.88 | 1.31 | 4.75 | |
S | 0.38 | 0.24 | 0.00 | 0.21 | 0.33 | 0.49 | 1.67 | |
Dearborn (N = 353) | PM2.5 | 9.88 | 5.37 | 1.15 | 5.85 | 9.25 | 13.00 | 34.65 |
EC | 0.51 | 0.30 | 0.00 | 0.30 | 0.46 | 0.65 | 1.72 | |
OC | 2.27 | 1.13 | 0.35 | 1.41 | 2.09 | 2.85 | 6.03 | |
NH4+ | 0.58 | 0.61 | 0.00 | 0.16 | 0.40 | 0.75 | 4.02 | |
NO3− | 1.58 | 1.89 | 0.00 | 0.41 | 0.81 | 1.98 | 12.33 | |
SO42− | 1.24 | 0.71 | 0.01 | 0.66 | 1.10 | 1.70 | 3.63 | |
S | 0.45 | 0.27 | 0.00 | 0.23 | 0.39 | 0.66 | 1.39 | |
Southwestern High School (N = 347) | PM2.5 | 10.83 | 5.48 | 1.30 | 6.55 | 10.00 | 13.95 | 33.86 |
EC | 0.61 | 0.41 | 0.04 | 0.33 | 0.50 | 0.77 | 3.21 | |
OC | 2.42 | 1.23 | 0.36 | 1.49 | 2.19 | 3.10 | 8.41 | |
NH4+ | 0.59 | 0.68 | 0.00 | 0.12 | 0.37 | 0.79 | 4.71 | |
NO3− | 1.62 | 1.91 | 0.03 | 0.45 | 0.85 | 1.92 | 11.98 | |
SO42− | 1.31 | 0.83 | 0.00 | 0.69 | 1.11 | 1.81 | 4.06 | |
S | 0.46 | 0.29 | 0.00 | 0.23 | 0.41 | 0.64 | 1.45 |
Year | PM2.5 | EC | OC | ||||||
---|---|---|---|---|---|---|---|---|---|
AP | DB | SWHS | AP | DB | SWHS | AP | DB | SWHS | |
2016 | 8.6 | 10.9 | 11.5 | 0.32 | 0.51 | 0.54 | 1.89 | 2.33 | 2.14 |
2017 | 8.5 | 10.7 | 10.5 | 0.31 | 0.45 | 0.48 | 1.97 | 2.56 | 2.34 |
2018 | 8.9 | 10.4 | 11.4 | 0.34 | 0.49 | 0.73 | 1.98 | 2.47 | 2.65 |
2019 | 8.3 | 9.0 | 11.4 | 0.44 | 0.52 | 0.70 | 1.74 | 1.94 | 2.85 |
2020 | 7.4 | 8.7 | 9.0 | 0.41 | 0.54 | 0.53 | 1.81 | 2.12 | 2.09 |
2021 | 10.0 | 9.7 | 11.2 | 0.41 | 0.56 | 0.67 | 2.09 | 2.24 | 2.43 |
PMF Approach | Source Category | Allen Park | Dearborn | SWHS | Average | ||||
---|---|---|---|---|---|---|---|---|---|
μg/m3 | % | μg/m3 | % | μg/m3 | % | μg/m3 | % | ||
Approach 1 Separate Profiles | Mobile | 2.76 | 33.7 | 3.78 | 39.9 | 4.31 | 42.1 | 3.62 | 38.6 |
Secondary nitrate | 1.77 | 21.6 | 1.90 | 20.1 | 1.70 | 16.7 | 1.79 | 19.5 | |
Secondary sulfate | 2.38 | 29.0 | 2.27 | 23.9 | 2.67 | 26.1 | 2.44 | 26.3 | |
Ferrous metals | 0.77 | 9.4 | 0.72 | 7.6 | 0.22 | 2.1 | 0.57 | 6.4 | |
Non-ferrous metals | 0.18 | 2.2 | 0.31 | 3.2 | 0.75 | 7.3 | 0.41 | 4.2 | |
Soil/Dust | 0.17 | 2.1 | 0.40 | 4.2 | 0.55 | 5.4 | 0.37 | 3.9 | |
Salt | 0.16 | 1.9 | 0.11 | 1.1 | 0.04 | 0.4 | 0.10 | 1.1 | |
Total | 8.19 | 100.0 | 9.48 | 100.0 | 10.23 | 100.0 | 9.30 | 100.0 | |
Approach 2 Combined Profiles | Mobile | 3.36 | 41.7 | 3.52 | 36.6 | 4.60 | 43.7 | 3.83 | 40.6 |
Secondary nitrate | 1.68 | 20.8 | 1.75 | 18.2 | 1.78 | 16.8 | 1.73 | 18.6 | |
Secondary sulfate | 2.37 | 29.4 | 2.51 | 26.1 | 2.74 | 26.0 | 2.54 | 27.1 | |
Ferrous metals | 0.17 | 2.1 | 0.88 | 9.1 | 0.41 | 3.9 | 0.49 | 5.0 | |
Non-ferrous metals | 0.15 | 1.8 | 0.34 | 3.6 | 0.18 | 1.7 | 0.22 | 2.3 | |
Soil/Dust | 0.20 | 2.4 | 0.29 | 3.0 | 0.40 | 3.8 | 0.30 | 3.1 | |
Salt | 0.15 | 1.9 | 0.34 | 3.5 | 0.43 | 4.1 | 0.31 | 3.2 | |
Total | 8.08 | 100.0 | 9.63 | 100.0 | 10.55 | 100.0 | 9.42 | 100.0 |
Site | Source Category | Approach 1 | Approach 2A | Approach 3 | |||
---|---|---|---|---|---|---|---|
Before Pan | Pandemic | Before Pan | Pandemic | Before Pan | Pandemic | ||
Allen Park | Mobile | 3.03 | 2.35 | 3.46 | 3.46 | 2.68 | 2.90 |
Secondary nitrate | 1.98 | 2.38 | 1.93 | 2.09 | 2.08 | 2.29 | |
Secondary sulfate | 1.56 | 1.58 | 1.29 | 1.69 | 1.21 | 1.60 | |
Ferrous metals | 0.57 | 0.00 | 0.15 | 0.11 | 0.41 | 0.28 | |
Non-ferrous metals | 0.47 | 0.40 | 0.25 | 0.17 | 0.48 | 0.33 | |
Soil/Dust | 0.12 | 0.26 | 0.23 | 0.15 | 0.26 | 0.17 | |
Salt | 0.01 | 0.92 | 0.21 | 0.18 | 0.40 | 0.37 | |
Total | 7.74 | 7.88 | 7.51 | 7.86 | 7.52 | 7.94 | |
Dearborn | Mobile | 3.19 | 2.79 | 2.89 | 3.39 | 2.92 | 2.75 |
Secondary nitrate | 1.20 | 2.14 | 1.83 | 2.00 | 1.98 | 2.30 | |
Secondary sulfate | 1.63 | 1.61 | 1.40 | 1.85 | 1.95 | 2.70 | |
Ferrous metals | 0.67 | 0.48 | 0.71 | 0.34 | 0.48 | 0.22 | |
Non-ferrous metals | 0.60 | 0.61 | 0.94 | 0.48 | 0.62 | 0.29 | |
Soil/Dust | 0.79 | 1.07 | 0.29 | 0.19 | 0.32 | 0.20 | |
Salt | 0.39 | 0.20 | 0.43 | 0.39 | 0.21 | 0.21 | |
Total | 8.46 | 8.90 | 8.49 | 8.63 | 8.48 | 8.67 | |
SWHS | Mobile | 3.04 | 3.17 | 5.15 | 3.83 | 4.19 | 2.87 |
Secondary nitrate | 1.78 | 2.04 | 1.95 | 1.94 | 1.99 | 2.05 | |
Secondary sulfate | 2.33 | 2.03 | 1.64 | 1.97 | 1.77 | 1.94 | |
Ferrous metals | 1.35 | 0.31 | 0.27 | 0.14 | 1.01 | 0.54 | |
Non-ferrous metals | 0.43 | 1.09 | 0.26 | 0.44 | 0.45 | 0.77 | |
Soil/Dust | 0.81 | 0.72 | 0.23 | 0.43 | 0.37 | 0.82 | |
Salt | 0.30 | 0.22 | 0.57 | 0.38 | 0.27 | 0.16 | |
Total | 10.03 | 9.57 | 10.07 | 9.13 | 10.06 | 9.16 |
Reference | Note | Site | Monitoring Period | Number of Factors | Measured PM2.5 Concen | Sum of Factor Contributions | Vehicles (Total)/Mobile (4) | Diesel Vehicles | Gasoline Vehicles | Secondary Sulfate | Secondary Nitrate | Metal | Ferrous Metals | Iron | Biomass | Soil/Dust/Crustal | Salt/Cl | Non-Ferrous Metals | Zn | Mixed Industrial | Incinerator (5) | Oil Combustion | Oil Refinery | Coal Combustion | Automotive Electroplating |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hammond et al., 2007 [25] | Eastside Detroit | 1999–2002 | 5 | 16.3 | 16.2 | 5.13 | 5.13 | 11.00 | 0.02 | 0.06 | 0.03 | ||||||||||||||
Hammond et al., 2007 [25] | Mayberry, SW Detroit | 1999–2002 | 7 | 18.1 | 18.0 | 6.40 | 2.16 | 4.24 | 10.80 | 0.75 | 0.02 | 0.06 | |||||||||||||
Morishita et al., 2006 [19] | (1) | SW Detroit | 2000–2003 | 6 | 18.0 | 16.1 | 2.68 | 2.68 | 9.60 | 3.63 | 3.33 | 0.23 | |||||||||||||
Buzcu-Guven et al., 2007 [26] | Allen Park | 2002–2005 | 8 | 15.8 | 16.9 | 5.90 | 2.37 | 3.53 | 4.51 | 4.16 | 0.56 | 0.30 | 0.63 | 0.80 | |||||||||||
Gildemeister et al., 2007 [27] | Allen Park | 2000–2005 | 8 | 16.1 | 15.6 | 3.20 | 0.67 | 2.53 | 4.99 | 4.49 | 0.51 | 0.51 | 1.29 | 0.57 | |||||||||||
Gildemeister et al., 2007 [27] | Dearborn | 2002–2005 | 8 | 19.4 | 19.1 | 4.92 | 1.17 | 3.75 | 4.84 | 3.89 | 1.24 | 2.14 | 0.72 | 1.30 | |||||||||||
Duvall et al., 2012 [16] | (2) | Allen Park | 2004–2006 | 7 | 17.4 | 17.5 | 3.83 | 3.83 | 5.74 | 4.00 | 1.32 | 0.35 | 1.46 | 0.75 | |||||||||||
Pancras et al., 2013 [17] | Dearborn | 2007 | 10 | 15.7 | 13.7 | 1.27 | 1.27 | 6.89 | 1.61 | 0.36 | 0.74 | 1.99 | 0.24 | 0.00 | 0.56 | 0.06 | |||||||||
Milando et al., 2016 [28] | (2) | Allen Park | 2001–2014 | 9 | 9.6 | 9.5 | 2.02 | 3.17 | 2.02 | 0.48 | 0.67 | 0.38 | 0.19 | 0.29 | 0.29 | ||||||||||
This study | (3) | 3 Sites—Approach 2 | 2016–2021 | 7 | 9.4 | 9.4 | 3.83 | 2.54 | 1.73 | 0.49 | 0.30 | 0.31 | 0.22 | ||||||||||||
Average | 7.6 | 15.6 | 15.8 | 3.93 | 2.21 | 3.58 | 6.84 | 3.36 | 0.52 | 0.49 | 1.12 | 0.51 | 1.13 | 0.49 | 0.29 | 0.54 | 1.02 | 1.79 | 0.09 | 0.56 | 0.06 | 0.03 |
Mobile Sources | Stationary Sources | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2011 | 2017 | 2000 | 2011 | 2017 | 2000 | 2011 | 2017 | ||||
NEI | PM2.5 | 7098 | 1716 | 852 | 3216 | 3465 | 4492 | 10,314 | 5180 | 5344 | ||
PM10 | 13,377 | 2692 | 1534 | 3846 | 7452 | 8410 | 17,223 | 10,143 | 9944 | |||
SO2 | 8480 | 583 | 328 | 50,397 | 42,689 | 15,612 | 58,877 | 43,272 | 15,940 | |||
NOx | 80,187 | 40,313 | 19,230 | 31,262 | 22,110 | 15,266 | 111,450 | 62,423 | 34,496 | |||
Industrial Sources by Year | ||||||||||||
2000 | 2005 | 2010 | 2015 | 2017 | 2020 | |||||||
MAERS | PM2.5 | 3506 | 815 | 494 | 432 | 766 | 686 | |||||
PM10 | 3824 | 2931 | 1910 | 1294 | 1370 | 1156 | ||||||
SO2 | 49,680 | 47,425 | 46,395 | 28,355 | 15,501 | 5970 | ||||||
NOx | 31,651 | 21,136 | 21,136 | 18,380 | 10,244 | 5591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Islam, M.K.; Xia, T.; Batterman, S. Apportionment of PM2.5 Sources across Sites and Time Periods: An Application and Update for Detroit, Michigan. Atmosphere 2023, 14, 592. https://doi.org/10.3390/atmos14030592
Yang Z, Islam MK, Xia T, Batterman S. Apportionment of PM2.5 Sources across Sites and Time Periods: An Application and Update for Detroit, Michigan. Atmosphere. 2023; 14(3):592. https://doi.org/10.3390/atmos14030592
Chicago/Turabian StyleYang, Zhiyi, Md Kamrul Islam, Tian Xia, and Stuart Batterman. 2023. "Apportionment of PM2.5 Sources across Sites and Time Periods: An Application and Update for Detroit, Michigan" Atmosphere 14, no. 3: 592. https://doi.org/10.3390/atmos14030592
APA StyleYang, Z., Islam, M. K., Xia, T., & Batterman, S. (2023). Apportionment of PM2.5 Sources across Sites and Time Periods: An Application and Update for Detroit, Michigan. Atmosphere, 14(3), 592. https://doi.org/10.3390/atmos14030592