Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Gridded Satellite Precipitation Datasets
2.2.2. CMIP6 Models
2.2.3. Global Sea-Surface Temperature
2.3. Methods
3. Results and Discussion
3.1. Performance Evaluation of GPCP and CMIP6 Models
3.2. Climatology of GPCP and CMIP6 Models
3.2.1. Spatial Variations
3.2.2. Temporal Variations
3.3. Linear Trend in Annual and Seasonal Precipitation
3.4. Temporal Correlation Analysis via Heatmaps
3.5. Relationship between Precipitation and Sea-Surface Temperature (SST)
4. Summary and Conclusions
- The CMIP6 MME exhibited a much better performance than the majority of the individual models.
- The CMIP6 MME reproduced the spatial pattern of the African monsoon more realistically than the majority of the GCMs. The CMIP6 MME and the GCMs exhibited a better ability to replicate the simulated precipitation in arid and semi-arid conditions in the NAF, Arabian Peninsula, SAF, and pockets of the EAF and the Sahelian belt. However, the model’s performance was low in humid regions along the Guinean Coast of the WAF, extending to the 5° S in the CEF.
- Most of the models reproduced pre-monsoon precipitation (i.e., December and JFMA) better than monsoon precipitation (MJJASON), suggesting that GCMs exhibit poor performance in simulating the spatial patterns of precipitation in monsoon seasons than in pre-monsoon seasons. In particular, individual models from the same modeling centers exhibited similarities in replicating wet (dry) precipitation bias at seasonal scales, suggesting dependence on the sharing of model physics and configurations.
- Regarding which GCMs are superior in replicating spatial and temporal variations, model sub-setting is encouraged, as most of the GCMs’ performances in reproducing precipitation were region- and season-specific. These seasonal differences are more insightful and provide significant information for agricultural-impact analysis. Depending on the application, model sub-selection is strongly encouraged.
- Furthermore, the GPCP exhibited a more heterogenous spatial correlation, and the CMIP6 MME showed a more homogeneous spatial correlation, in the equatorial region (at both annual and seasonal scales). Few of the models showed more heterogenous spatial correlations, while the majority showed homogeneous spatial correlations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Working Group I Contribution to the Sixth Assessment Report; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- IPCC. The Working Group II contribution, Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Dosio, A.; Jury, M.W.; Almazroui, M.; Ashfaq, M.; Diallo, I.; Engelbrecht, F.A.; Klutse, N.A.B.; Lennard, C.; Pinto, I.; Sylla, M.B.; et al. Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Clim. Dyn. 2021, 57, 3135–3158. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O'Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Zong-Ci, Z.; Yong, L.; Jian-Bin, H. A Review on Evaluation Methods of Climate Modeling. Adv. Clim. Chang. Res. 2013, 4, 137–144. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Lim Kam Sian, K.T.C.; Wang, J.; Ayugi, B.O.; Nooni, I.K.; Ongoma, V. Multi-Decadal Variability and Future Changes in Precipitation over Southern Africa. Atmosphere 2021, 12, 742. [Google Scholar] [CrossRef]
- Babaousmail, H.; Hou, R.; Ayugi, B.; Ojara, M.; Ngoma, H.; Karim, R.; Rajasekar, A.; Ongoma, V. Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere 2021, 12, 475. [Google Scholar] [CrossRef]
- Faye, A.; Akinsanola, A.A. Evaluation of extreme precipitation indices over West Africa in CMIP6 models. Clim. Dyn. 2022, 58, 925–939. [Google Scholar] [CrossRef]
- Ajibola, F.; Zhou, B.; Gnitou, G.; Onyejuruwa, A. Evaluation of the performance of CMIP6 HighResMIP on West African precipitation. Atmosphere 2020, 11, 1053. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ongoma, V.; Kooperman, G.J. Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmos. Res. 2021, 254, 105509. [Google Scholar] [CrossRef]
- Ayugi, B.; Dike, V.; Ngoma, H.; Babaousmail, H.; Mumo, R.; Ongoma, V. Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. Water 2021, 13, 2358. [Google Scholar] [CrossRef]
- Woolnough, S.J.; Slingo, J.M.; Hoskins, B.J. The relationship between convection and sea surface temperature on intraseasonal time scale. J. Clim. 2000, 13, 2086–2104. [Google Scholar] [CrossRef]
- Pimonsree, S.; Kamworapan, S.; Gheewala, S.; Thongbhakdi, A.; Prueksakorn, K. Evaluation of CMIP6 GCMs performance to simulate precipitation over Southeast Asia. Atmos. Res. 2022, 282, 106522. [Google Scholar] [CrossRef]
- Konda, G.; Vissa, N.K. Evaluation of CMIP6 models for simulations of surplus/deficit summer monsoon conditions over India. Clim. Dyn. 2023, 60, 1023–1042. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, C.; Zhou, Z.; Gao, T.; Wang, S.; Zhang, X.; Cai, H.; Shi, H. Evaluation of precipitation and its time series components in CMIP6 over the Yellow River Basin. Clim. Dyn. 2023, 60, 1203–1223. [Google Scholar] [CrossRef]
- Das, P.; Zhang, Z.; Ghosh, S.; Lu, J.; Ayugi, B.; Ojara, M.A.; Guo, X. Historical and projected changes in Extreme High Temperature events over East Africa and associated with meteorological conditions using CMIP6 models. Glob. Planet. Chang. 2023, 222, 104068. [Google Scholar] [CrossRef]
- Iturbide, M.; Gutiérrez, J.; Alves, L.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.; Di Luca, A.; Faria, S.; Gorodetskaya, I.; et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Teichmann, C.; Jacob, D.; Remedio, A.R.; Remke, T.; Buntemeyer, L.; Hoffmann, P.; Kriegsmann, A.; Lierhammer, L.; Buelow, K.; Weber, T.; et al. Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim. Dyn. 2021, 57, 1269–1292. [Google Scholar] [CrossRef]
- Nooni, I.; Fiifi, D.; Hagan, D.; Ullah, W.; Lu, J.; Shijie, L.; Prempeh, N.; Gnitou, G.; Thiam, K.; Lim, C.; et al. Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa. Agriculture 2022, 12, 495. [Google Scholar] [CrossRef]
- Gnitou, G.T.; Tan, G.; Niu, R.; Nooni, I.K. Assessing Past Climate Biases and the Added Value of CORDEX-CORE Precipitation Simulations over Africa. Remote Sens. 2021, 13, 2058. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Zhou, W. Projection of West African summer monsoon rainfall in dynamically downscaled CMIP5 models. Clim. Dyn. 2019, 53, 81–95. [Google Scholar] [CrossRef]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional Climatic Features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- US Marine Corps. A Persian Gulf Region Climatology; Headquarters United States Marine Corps: Washington, DC, USA, 1990. [Google Scholar]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Ping-Ping, X. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Mote, P.; Brekke, L.; Duffy, P.B.; Maurer, E. Guidelines for constructing climate scenarios. Eos Trans. AGU 2011, 92, 257–258. [Google Scholar] [CrossRef]
- Sumiya, E.; Dorjsuren, B.; Yan, D.; Dorligjav, S.; Wang, H.; Enkhbold, A.; Weng, B.; Qin, T.; Wang, K.; Gerelmaa, T.; et al. Changes in Water Surface Area of the Lake in the Steppe Region of Mongolia: A Case Study of Ugii Nuur Lake, Central Mongolia. Water 2020, 12, 1470. [Google Scholar] [CrossRef]
- Sein, Z.; Zhi, X.; Ogou, F.; Nooni, I.; Paing, K. Evaluation of coupled model intercomparison project phase 6 models in simulating precipitation and its possible relationship with sea surface temperature over Myanmar. Front. Environ. Sci. 2022, 10, 2228. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Nooni, I.; Hagan, D.; Hagan, T.; Wang, G.; Ullah, W.; Shijie, L.; Lu, J.; Bhatti, A.; Shi, X.; Lou, D.; et al. Spatiotemporal Characteristics and Trend Analysis of Two Evapotranspiration-Based Drought Products and Their Mechanisms in Sub-Saharan Africa. Remote Sens. 2021, 13, 533. [Google Scholar] [CrossRef]
- Xue, Y.; De Sales, F.; Lau, W.K.M.; Boone, A.; Feng, J.; Dirmeyer, P.; Guo, Z.; Kim, K.-M.; Kitoh, A.; Kumar, V.; et al. Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim. Dyn. 2010, 35, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Measures; Charles Griffin: London, UK, 1975; Volume 202. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall's Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Dzerdzeevskii, B.; Flohn, H. Climate Change, 79th ed.; World Meteorological Organization: Geneva, Switzerland, 1966. [Google Scholar]
- Nooni, I.K.; Wang, G.; Hagan, D.F.T.; Lu, J.; Ullah, W.; Li, S. Evapotranspiration and its Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water 2019, 11, 1400. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, A.; Arakawa, O. On overestimation of tropical precipita tion by an atmospheric GCM with prescribed SST. Geophys. Res. Lett. 1999, 26, 2965–2968. [Google Scholar] [CrossRef]
- Golaz, J.-C.; Caldwell, P.M.; Van Roekel, L.P.; Petersen, M.R.; Tang, Q.; Wolfe, J.D.; Abeshu, G.; Anantharaj, V.; Asay-Davis, X.S.; Bader, D.C.; et al. The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. J. Adv. Model. Earth Syst. 2019, 11, 2089–2129. [Google Scholar] [CrossRef] [Green Version]
- Voldoire, A.; Saint-Martin, D.; Sénési, S.; Decharme, B.; Alias, A.; Chevallier, M.; Colin, J.; Guérémy, J.-F.; Michou, M.; Moine, M.-P.; et al. Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 2019, 11, 2177–2213. [Google Scholar] [CrossRef] [Green Version]
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef] [Green Version]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O'Connor, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and Evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of climate forcings. J. Geophys.Res. Atmos. 2005, 110, D18104. [Google Scholar] [CrossRef]
- Gregory, J.M.; Ingram, W.J.; Palmer, M.A.; Jones, G.S.; Stott, P.A.; Thorpe, R.B.; Lowe, J.A.; Johns, T.C.; Williams, K.D. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 2004, 31, L03205. [Google Scholar] [CrossRef] [Green Version]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos. 2008, 113, D06104. [Google Scholar] [CrossRef]
- Crétat, J.; Vizy, E.K.; Cook, K.H. How well are daily intense rainfall events captured by current climate models over Africa? Clim. Dyn. 2014, 42, 2691–2711. [Google Scholar] [CrossRef]
- Hourdin, F.; Musat, I.; Grandpeix, J.-Y.; Polcher, J.; Guichard, F.; Favot, F.; Marquet, P.; Boone, A.; Lafore, J.P.; Redelsperger, J.-L.; et al. AMMA-Model intercomparison project. Bull. Am. Meteorol. Soc. 2010, 91, 95–104. [Google Scholar] [CrossRef]
- Douville, H.; Chauvin, F.; Broqua, H. Influence of soil moisture on the Asian and African monsoons Part I: Mean monsoon and daily precipitation. J. Clim. 2001, 14, 2381–2403. [Google Scholar] [CrossRef]
- Flato, G. Coauthors. In Evaluation of Climate Models; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kendon, E.J.; Stratton, R.A.; Tucker, S.; Marsham, J.H.; Berthou, S.; Rowell, D.P.; Senior, C.A. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 2019, 10, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowell, D.P.; Folland, C.K.; Maskell, K.; Ward, M.N. Variability of summer rainfall over tropical North Africa (1906–1992): Observations and modeling. Q. J. R. Meteorol. Soc. 1995, 121, 669–704. [Google Scholar]
- Patricola, C.M.; Cook, K.H. Northern African climate at the end of the twenty-first century: An integrated application of regional and global climate models. Clim. Dyn. 2010, 35, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. A novel selection method of CMIP6 GCMs for robust climate projection. Int. J. Climatol. 2022, 42, 4258–4272. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S.; Drobinski, P. Characterization of the diurnal cycle of the West African Monsoon around the monsoon onset. J. Clim. 2007, 20, 4014–4032. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S. Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett. 2000, 27, 3353–3356. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C. Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. Int. J. Climatol. 2018, 38, 1375–1392. [Google Scholar] [CrossRef]
- Ayugi, B.; Zhihong, J.; Zhu, H.; Ngoma, H.; Babaousmail, H.; Rizwan, K.; Dike, V. Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. Int. J. Climatol. 2021, 41, 6474–6496. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Shukla, S.; Husak, G.; Michaelsen, J. The East African Monsoon System: Seasonal Climatologies and Recent Variations. In The Monsoons and Climate Change: Observations and Modeling; de Carvalho, L.M.V., Jones, C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 163–185. [Google Scholar]
- Agyekum, J.; Annor, T.; Lamptey, B.; Quansah, E.; Agyeman, R.Y.K. Evaluation of CMIP5 Global Climate Models over the Volta Basin: Precipitation. Adv. Meteorol. 2018, 2018, 4853681. [Google Scholar] [CrossRef] [Green Version]
- Aloysius, N.R.; Sheffield, J.; Saiers, J.E.; Li, H.; Wood, E.F. Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 121, 130–152. [Google Scholar] [CrossRef] [Green Version]
- Fotso-Nguemo, T.C.; Chamani, R.; Yepdo, Z.D.; Sonkoué, D.; Matsaguim, C.N.; Vondou, D.A.; Tanessong, R.S. Projected trends of extreme rainfall events from CMIP5 models over Central Africa. Atmos. Sci. Lett. 2018, 19, e803. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C. Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theor. Appl. Climatol. 2019, 135, 893–910. [Google Scholar] [CrossRef]
- Vizy, E.K.; Cook, K.H.; Crétat, J.; Neupane, N. Projections of a Wetter Sahel in the Twenty-First Century from Global and Regional Models. J. Clim. 2013, 26, 4664–4687. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Ziarh, G.F.; Chung, E.-S.; Wang, X. Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos. Res. 2021, 254, 105525. [Google Scholar] [CrossRef]
- Mahony, C.R.; Wang, T.; Hamann, A.; Cannon, A.J. A global climate model ensemble for downscaled monthly climate normals over North America. Int. J. Climatol. 2022, 42, 5871–5891. [Google Scholar] [CrossRef]
No. | Model Name | Institution | Resolution |
---|---|---|---|
1 | ACCESS-ESM1-5 | Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia | 192 × 145 |
2 | ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Australian Research Council Centre of Excellence for Climate System Science (ACCESS), Australia | 192 × 144 |
3 | AWI-CM-1-1-MR | Alfred Wegener Institute Climate Model | 384 × 192 |
4 | AWI-ESM-1-1-LR | Alfred Wegener Institute Climate Model | 192 × 96 |
5 | BCC-CSM2-MR | Beijing Climate Center, China Meteorological Administration, China | 320 × 160 |
6 | BCC-ESM1 | Beijing Climate Center, China Meteorological Administration, China | 128 × 64 |
7 | CAMS-CSM1-0 | Climate Academy of Meteorological Sciences-Climate Simulation Model | 100×100 |
8 | CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada | 128 × 64 |
9 | CanESM5-CanOE | Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada | 100×100 |
10 | CESM2 | National Centre for Atmospheric Research (NCAR), USA | 288 × 192 |
11 | CESM2-FV2 | National Centre for Atmospheric Research (NCAR), USA | 144 × 96 |
12 | CESM2-WACCM | National Centre for Atmospheric Research (NCAR), USA | 288 × 192 |
13 | CESM2-WACCM-FV2 | National Centre for Atmospheric Research (NCAR), USA | 144 × 96 |
14 | CMCC-CM2-HR4 | Euro-Mediterranean Centre on Climate Change, Italy | 288 × 192 |
15 | CMCC-CM2-SR5 | Euro-Mediterranean Centre on Climate Change, Italy | 288 × 192 |
16 | CMCC-ESM2 | Euro-Mediterranean Centre on Climate Change, Italy | 288 × 192 |
17 | CNRM-CM6-1 | Center National de Recherches Météorologiques– Center Européen de Recherche et de Formation Avancée en Calcul Scientifique, France. | 256 × 128 |
18 | CNRM-CM6-1-HR | Center National de Recherches Météorologiques– Center Européen de Recherche et de Formation Avancée en Calcul Scientifique, France. | 720 × 360 |
19 | CNRM-ESM2-1 | Center National de Recherches Météorologiques– Center Européen de Recherche et de Formation Avancée en Calcul Scientifique, France. | 256 × 128 |
20 | E3SM-1-0 | Lawrence Livermore National Laboratory (LLNL), USA | 360 × 180 |
21 | E3SM-1-1 | E3SM Project | 360 × 180 |
22 | E3SM-1-1-ECA | 360 × 180 | 360 × 180 |
23 | EC-Earth3-AerChem | EC-EARTH consortium, The Netherlands/Ireland | 512 × 256 |
24 | EC-Earth-CC | EC-EARTH consortium, The Netherlands/Ireland | 512 × 256 |
25 | EC-Earth3-Veg-LR | EC-EARTH consortium, The Netherlands/Ireland | 512 × 256 |
26 | FGOALS-f3-L | Chinese Academy of Sciences, China | 288 180 |
27 | FGOALS-g3 | Chinese Academy of Sciences, China | 180 × 80 |
28 | FIO-ESM-2-0 | First Institute of Oceanography Earth System Model Earth System Models | 288 × 180 |
29 | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory, USA | 288 × 180 |
30 | GISS-E2-1-H | NASA Goddard Institute for Space Studies, USA | 144 × 90 |
31 | HadGEM3-GC31-LL | Met Office Hadley Centre, United Kingdom | 192 × 144 |
32 | HadGEM3-GC31-MM | Met Office Hadley Centre, United Kingdom | 432 × 324 |
33 | INM-CM4-8 | Institute for Numerical Mathematics, Russia | 180 × 120 |
34 | INM-CM5-0 | 180 × 120 | |
35 | IPSL-CM5A2-INCA | Institut Pierre-Simon Laplace, France | 180 × 120 |
36 | IPSL-CM6A-LR | 144 × 143 | |
37 | KACE-1-0-G | National Institute for Meteorological Sciences/Korean Meteorological Administration (NIMS-KMA) | 192 × 144 |
38 | MCM-UA-1-0 | University of Arizona (UA), USA | 96 × 80 |
39 | MICRO6 | Japan Agency for Marine Earth Science and Technology (JAMSTEC), The University of Tokyo, Japan | 256 × 128 |
40 | MICRO-ES2L | The University of Tokyo, Japan | 128 × 64 |
41 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany | 384 × 192 |
42 | MPI-ESM1-2-LR | 192 × 96 | |
43 | MRI-ESM2-0 | Meteorological Research Institute, Japan | 320 × 160 |
44 | NESM3 | Nanjing University of Information Science and Technology, China | 192 × 96 |
45 | NorCPM1 | Norwegian Climate Center, Norway | 144 × 96 |
46 | NorESM2-LM | Norwegian Climate Center, Norway | 144 × 96 |
47 | SAM0-UNICON | Seoul National University, South Korea | 288 × 192 |
48 | TaiESM1 | Research Center for Environmental Changes, Taipei, Taiwan | 192 × 96 |
49 | UKESM1-0-LL | Met Office Hadley Centre, United Kingdom | 192 × 144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nooni, I.K.; Ogou, F.K.; Chaibou, A.A.S.; Nakoty, F.M.; Gnitou, G.T.; Lu, J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere 2023, 14, 607. https://doi.org/10.3390/atmos14030607
Nooni IK, Ogou FK, Chaibou AAS, Nakoty FM, Gnitou GT, Lu J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere. 2023; 14(3):607. https://doi.org/10.3390/atmos14030607
Chicago/Turabian StyleNooni, Isaac Kwesi, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Francis Mawuli Nakoty, Gnim Tchalim Gnitou, and Jiao Lu. 2023. "Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation" Atmosphere 14, no. 3: 607. https://doi.org/10.3390/atmos14030607
APA StyleNooni, I. K., Ogou, F. K., Chaibou, A. A. S., Nakoty, F. M., Gnitou, G. T., & Lu, J. (2023). Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere, 14(3), 607. https://doi.org/10.3390/atmos14030607