Measurement of Phthalates in Settled Dust in University Dormitories and Its Implications for Exposure Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Chemicals
2.3. Dust Sampling and Chemical Analysis
2.4. Quality Assurance and Quality Control (QA and QC)
2.5. Statistical Analysis
2.6. Exposure Assessment
2.7. Uncertainty and Sensitivity Analysis
3. Results
3.1. Phthalate Concentrations in Settled Dust
3.2. Exposure to Phthalates in Dormitories
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbuhler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Salthammer, T.; Zhang, Y.; Mo, J.; Koch, H.M.; Weschler, C.J. Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angew. Chem. Int. Ed. 2018, 57, 12228–12263. [Google Scholar] [CrossRef]
- Arbuckle, T.E.; Agarwal, A.; MacPherson, S.H.; Fraser, W.D.; Sathyanarayana, S.; Ramsay, T.; Dodds, L.; Muckle, G.; Fisher, M.; Foster, W.; et al. Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: The MIREC study. Environ. Int. 2018, 120, 572–583. [Google Scholar] [CrossRef]
- Smarr, M.M.; Kannan, K.; Sun, L.; Honda, M.; Wang, W.; Karthikraj, R.; Chen, Z.; Weck, J.; Buck Louis, G.M. Preconception seminal plasma concentrations of endocrine disrupting chemicals in relation to semen quality parameters among male partners planning for pregnancy. Environ. Res. 2018, 167, 78–86. [Google Scholar] [CrossRef]
- Chin, H.B.; Jukic, A.M.; Wilcox, A.J.; Weinberg, C.R.; Ferguson, K.K.; Calafat, A.M.; McConnaughey, D.R.; Baird, D.D. Association of urinary concentrations of phthalate metabolites and bisphenol A with early pregnancy endpoints. Environ. Res. 2018, 168, 254–260. [Google Scholar] [CrossRef]
- Radke, E.G.; Braun, J.M.; Meeker, J.D.; Cooper, G.S. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environ. Int. 2018, 121, 764–793. [Google Scholar] [CrossRef]
- Bornehag, C.-G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hägerhed-Engman, L. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case-control study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Lin, Z.; Liao, C.; Zhang, J.; Liu, W.; Wang, X.; Cai, J.; Zou, Z.; Wang, H.; Norback, D.; et al. Urinary phthalate metabolites in relation to childhood asthmatic and allergic symptoms in Shanghai. Environ. Int. 2018, 121 Pt 1, 276–286. [Google Scholar] [CrossRef]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Kim, M.S.; Lim, Y.H.; Lee, N.; Hong, Y.C. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and neurodevelopmental outcomes: A systematic review and meta-analysis. Environ. Res. 2018, 167, 558–566. [Google Scholar] [CrossRef]
- Radke, E.G.; Galizia, A.; Thayer, K.A.; Cooper, G.S. Phthalate exposure and metabolic effects: A systematic review of the human epidemiological evidence. Environ. Int. 2019, 132, 104768. [Google Scholar] [CrossRef]
- Xia, B.; Zhu, Q.; Zhao, Y.; Ge, W.; Zhao, Y.; Song, Q.; Zhou, Y.; Shi, H.; Zhang, Y. Phthalate exposure and childhood overweight and obesity: Urinary metabolomic evidence. Environ. Int. 2018, 121 Pt 1, 159–168. [Google Scholar] [CrossRef]
- Bi, C.Y.; Wang, X.K.; Li, H.; Li, X.; Xu, Y. Direct transfer of phthalate and alternative plasticizers from indoor source products to dust: Laboratory measurements and predictive modeling. Environ. Sci. Technol. 2021, 55, 341–351. [Google Scholar] [CrossRef]
- Sukiene, V.; von Goetz, N.; Gerecke, A.C.; Bakker, M.I.; Delmaar, C.J.; Hungerbuhler, K. Direct and Air-Mediated Transfer of Labeled SVOCs from Indoor Sources to Dust. Environ. Sci. Technol. 2017, 51, 3269–3277. [Google Scholar] [CrossRef]
- Bu, Z.; Zhang, Y.; Mmereki, D.; Yu, W.; Li, B. Indoor phthalate concentration in residential apartments in Chongqing, China: Implications for preschool children’s exposure and risk assessment. Atmos. Environ. 2016, 127, 34–45. [Google Scholar] [CrossRef]
- Fan, G.; Xie, J.; Yoshino, H.; Zhang, H.; Li, Z.; Li, N.; Liu, J.; Lv, Y.; Zhu, S.; Yanagi, U.; et al. Common SVOCs in house dust from urban dwellings with schoolchildren in six typical cities of China and associated non-dietary exposure and health risk assessment. Environ. Int. 2018, 120, 431–442. [Google Scholar] [CrossRef]
- Guo, Y.; Kannan, K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ. Sci. Technol. 2011, 45, 3788–3794. [Google Scholar] [CrossRef]
- He, R.; Li, Y.; Xiang, P.; Li, C.; Zhou, C.; Zhang, S.; Cui, X.; Ma, L.Q. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2016, 150, 528–535. [Google Scholar] [CrossRef]
- Wang, L.; Gong, M.; Xu, Y.; Zhang, Y. Phthalates in dust collected from various indoor environments in Beijing, China and resulting non-dietary human exposure. Build. Environ. 2017, 124, 315–322. [Google Scholar] [CrossRef]
- Boor, B.E.; Jarnstrom, H.; Novoselac, A.; Xu, Y. Infant exposure to emissions of volatile organic compounds from crib mattresses. Environ. Sci. Technol. 2014, 48, 3541–3549. [Google Scholar] [CrossRef]
- Boor, B.E.; Liang, Y.; Crain, N.E.; Järnström, H.; Novoselac, A.; Xu, Y. Identification of Phthalate and Alternative Plasticizers, Flame Retardants, and Unreacted Isocyanates in Infant Crib Mattress Covers and Foam. Environ. Sci. Technol. Lett. 2015, 2, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Boor, B.E.; Spilak, M.P.; Laverge, J.; Novoselac, A.; Xu, Y. Human exposure to indoor air pollutants in sleep microenvironments: A literature review. Build. Environ. 2017, 125, 528–555. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Y. Emission of phthalates and phthalate alternatives from vinyl flooring and crib mattress covers: The influence of temperature. Environ. Sci. Technol. 2014, 48, 14228–14237. [Google Scholar] [CrossRef]
- Bu, Z.; Hu, M.; Yuan, F.; Xu, Y.; Dong, C.; Zhang, N.; Mmereki, D.; Cao, J.; Zheng, Y. Phthalates in Chinese vehicular environments: Source emissions, concentrations, and human exposure. Indoor Air 2021, 31, 2118–2129. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Little, J.C.; Zhang, Y. A SPME-based method for rapidly and accurately measuring the characteristic parameter for DEHP emitted from PVC floorings. Indoor Air 2017, 27, 417–426. [Google Scholar] [CrossRef]
- Hou, J.; Sun, Y.; Wang, P.; Zhang, Q.; Kong, X.; Sundell, J. Associations between ventilation and children’s asthma and allergy in naturally ventilated Chinese homes. Indoor Air 2021, 31, 383–391. [Google Scholar] [CrossRef]
- Bekö, G.; Lund, T.; Nors, F.; Toftum, J.; Clausen, G. Ventilation rates in the bedrooms of 500 Danish children. Build. Environ. 2010, 45, 2289–2295. [Google Scholar] [CrossRef]
- Li, H.L.; Song, W.W.; Zhang, Z.F.; Ma, W.L.; Gao, C.J.; Li, J.; Huo, C.Y.; Mohammed, M.O.A.; Liu, L.Y.; Kannan, K.; et al. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment. Sci. Total Environ. 2016, 565, 496–502. [Google Scholar] [CrossRef]
- Yao, J.; Hu, M.; Yuan, F.; Ye, H.; Xu, Z.; Zhang, X.; Qiu, G.; Dong, C.; Mmereki, D.; Xu, Y.; et al. Exposure to phthalates in the sleeping microenvironment of university dormitories: A preliminary estimate based on skin wipe and dust sampling. Build. Environ. 2022, 218, 109135. [Google Scholar] [CrossRef]
- Bu, Z.; Mmereki, D.; Wang, J.; Dong, C. Exposure to commonly-used phthalates and the associated health risks in indoor environment of urban China. Sci. Total Environ. 2019, 658, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Nazaroff, W.W. SVOC partitioning between the gas phase and settled dust indoors. Atmos. Environ. 2010, 44, 3609–3620. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Benning, J.L.; Little, J.C. The effect of ventilation on indoor exposure to semivolatile organic compounds. Indoor Air 2015, 25, 285–296. [Google Scholar] [CrossRef] [PubMed]
- McKone, T.E. CalTOX, A Multimedia Total-Exposure Model for Hazardous-Wastes 232 Sites Part II: The Dynamic Multimedia Transport and Transformation Model; Lawerence 233 Livermore National Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency: Sacramento, CA, USA, 1993.
- Clausen, P.A.; Liu, Z.; Kofoed-Sorensen, V.; Little, J.C.; Wolkoff, P. Infuence of temperature on the emission of di-(2-ethylhexyl)-phthalate (DEHP) from PVC fooring in the emission cell FLEC. Environ. Sci. Technol. 2012, 46, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Wang, L.; Liu, F.; Zhao, Y.; Shi, X.; Li, S. Characteristics of dust-phase phthalates in dormitory, classroom, and home and non-dietary exposure in Beijing, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 38159–38172. [Google Scholar] [CrossRef]
- Xu, S.; Li, C. Phthalates in House and Dormitory Dust: Occurrence, Human Exposure and Risk Assessment. Bull. Environ. Contam. Toxicol. 2021, 106, 393–398. [Google Scholar] [CrossRef]
- Hua, L.; Guo, S.; Xu, J.; Yang, X.; Zhu, H.; Yao, Y.; Zhu, L.; Li, Y.; Zhang, J.; Sun, H.; et al. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. Sci. Total Environ. 2022, 845, 157251. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Zhang, Y. Predicting Dermal Exposure to Gas-Phase Semivolatile Organic Compounds (SVOCs): A Further Study of SVOC Mass Transfer between Clothing and Skin Surface Lipids. Environ. Sci. Technol. 2018, 52, 4676–4683. [Google Scholar] [CrossRef]
- Bu, Z.; Dong, C.; Mmereki, D.; Ye, Y.; Cheng, Z. Modeled exposure to phthalates via inhalation and dermal pathway in children’s sleeping environment: A preliminary study and its implications. Build. Simul. 2021, 14, 1785–1794. [Google Scholar] [CrossRef]
- Morrison, G.C.; Weschler, C.J.; Beko, G.; Koch, H.M.; Salthammer, T.; Schripp, T.; Toftum, J.; Clausen, G. Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
DMP | DEP | DnBP | BBzP | DEHP | DOP | |
---|---|---|---|---|---|---|
Bedside | ||||||
Mean | 8.5 | 5.2 | 264 | 54.7 | 958 | 95.0 |
25th% | 4.2 | 0.3 | 48.0 | 7.3 | 329 | 36.2 |
50th% | 6.1 | 4.3 | 195 | 42.6 | 660 | 54.0 |
75th% | 7.5 | 7.2 | 309 | 59.6 | 1597 | 114 |
frequency | 96 | 70 | 100 | 100 | 100 | 100 |
Table | ||||||
Mean | 4.5 | 4.1 | 43.8 | 27.3 | 210 | 28.4 |
25th% | 1.0 | 0.3 | 4.6 | 9.9 | 57.3 | 10.0 |
50th% | 2.7 | 2.8 | 16.0 | 21.2 | 130 | 16.8 |
75th% | 4.9 | 5.7 | 35.9 | 45.2 | 220 | 40.6 |
frequency | 80 | 72 | 92 | 96 | 100 | 100 |
DMP | DEP | DnBP | BBzP | DEHP | DOP | |
---|---|---|---|---|---|---|
DMP | −0.111 | |||||
DEP | 0.315 | |||||
DnBP | 0.724 ** | |||||
BBzP | 0.636 ** | |||||
DEHP | 0.704 ** | |||||
DOP | 0.460 * |
References | Cities | Sample Size | DnBP | DEHP |
---|---|---|---|---|
Present study (bedside) | Hangzhou | 30 | 195 | 660 |
Present study (table) | 16.0 | 130 | ||
Qu et al. (2021) [37] | Beijing | 102 | 32.7 | 171 |
He et al. (2016) [20] | Nanjing | 8 | 76.2 | 202 |
Xu and Li (2021) [38] | Nanjing | 23 | 38.8 | 134.9 |
Li et al. (2016) [30] | Harbin | 18 | 45.2 | 270 |
Li et al. (2016) [30] | Baoding | 8 | 29.2 | 65.2 |
Li et al. (2016) [30] | Shenyang | 8 | 37.1 | 657 |
Hua et al. (2022) [39] | Tianjin | 36 | 25.0 | 68.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yuan, F.; Ye, H.; Bu, Z. Measurement of Phthalates in Settled Dust in University Dormitories and Its Implications for Exposure Assessment. Atmosphere 2023, 14, 612. https://doi.org/10.3390/atmos14040612
Wang J, Yuan F, Ye H, Bu Z. Measurement of Phthalates in Settled Dust in University Dormitories and Its Implications for Exposure Assessment. Atmosphere. 2023; 14(4):612. https://doi.org/10.3390/atmos14040612
Chicago/Turabian StyleWang, Jiahui, Fangzhou Yuan, Haitian Ye, and Zhongming Bu. 2023. "Measurement of Phthalates in Settled Dust in University Dormitories and Its Implications for Exposure Assessment" Atmosphere 14, no. 4: 612. https://doi.org/10.3390/atmos14040612
APA StyleWang, J., Yuan, F., Ye, H., & Bu, Z. (2023). Measurement of Phthalates in Settled Dust in University Dormitories and Its Implications for Exposure Assessment. Atmosphere, 14(4), 612. https://doi.org/10.3390/atmos14040612