IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19
Abstract
:1. Introduction
- The Real-time Gradient Aware Multi-Variable Sensing Model (GAM-VSM)
- The Optimized Bi-Cluster Regression Machine Learning Model (OBR-MLM)
- Case Study: Urban Scale IoT-based AQI Monitoring System.
2. Materials and Methods
2.1. The Real-Time Multi-Variable Geospatial Gradient-Aware AQI Sensing Model (GAM-VSM)
- (a)
- The mandatory gradient unit Δ1CO2 to monitor the CO2 gradient from inhaled air at temperature Δ1T.
- (b)
- The role of the gradient of the temperature of exhaled air Δ2T with Δ2CO2 recycled in the breathing zone due to a mask.
2.2. The Optimized Bi-Cluster Regression Machine Learning Model (OBR-MLM)
2.3. A Case Study: Urban Scale IoT-Based AQI Monitoring System
3. Results and Discussion
4. Limitations and Future Recommendation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorota, J. WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- US EPA. National Ambient Air Quality Standards (NAAQS); US EPA: Washington, DC, USA, 2020. [Google Scholar]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef]
- Peng, Z.; Jose, L. Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environ. Sci. Technol. Lett. 2021, 8, 392–397. [Google Scholar] [CrossRef]
- Jiandong, C.; Chong, X.; Ming, G.; Ding, L. Carbon peak and its mitigation implications for China in the post-pandemic era. Sci. Rep. 2022, 12, 3473. [Google Scholar]
- Dias, S.B.; Hadjileontiadou, S.J.; Diniz, J.; Hadjileontiadis, L.J. DeepLMS: A deep learning predictive model for supporting online learning in the COVID-19 era. Sci. Rep. 2020, 10, 19888. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jinyan, Z.; Shanying, H. Regression analysis and driving force model building of CO2 emissions in China. Sci. Rep. 2020, 11, 6715. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Kumar, A. Spatio-temporal trend analysis of rainfall using parametric and non-parametric tests: Case study in Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 183–207. [Google Scholar] [CrossRef]
- Abbasi, S.A. Monitoring analytical measurements in presence of two component measurement error. J. Anal. Chem. 2014, 69, 1023–1029. [Google Scholar] [CrossRef]
- Santiago, M.-C.; Eugenio, F.; Antonio, M. Time Series Decomposition of the Daily Outdoor Air Temperature in Europe for Long-Term Energy Forecasting in the Context of Climate Change. Energies 2020, 13, 1569. [Google Scholar]
- Stanislaus, S.U. Power Comparisons of Five Most Commonly Used Autocorrelation Tests. Pak. J. Stat. Oper. Res. 2020, 16, 119–130. [Google Scholar]
- Ian, F.A.; Weilien, S.; Yoegsh, S.; Erdal, C. A Survey on Sensor Networks. IEEE Commun. Mag. 2002, 40, 102–114. [Google Scholar]
- Tariq, H.; Shafaq, S. Real-time Contactless Bio-Sensors and Systems for Smart Healthcare using IoT and E-Health Applications. WSEAS Trans. Biol. Biomed. 2022, 19, 91–106. [Google Scholar] [CrossRef]
- Touati, F.; Tariq, H.; Mohammed, A.A.; Adel, B.M.; Anas, T.; Damiano, C.I. IoT and IoE Prototype for Scalable Infrastructures, Architectures and Platforms. Int. Robot. Autom. 2018, 4, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Vinyals, M.V.; Juan, R.-A.; Jesús, C. A Survey on Sensor Networks from a Multi-Agent Perspective. Comput. J. 2014, 54, 455–470. [Google Scholar]
- Saberi-Movahed, F.; Mohammadifard, M.; Mehrpooya, A.; Rezaei-Ravari, M.; Berahmand, K.; Rostami, M.; Karami, S.; Najafzadeh, M.; Hajinezhad, D.; Jamshidi, M. Decoding clinical biomarker space of COVID-19: Exploring matrix factorization-based feature selection methods. Comput. Biol. Med. 2022, 146, 105426. [Google Scholar] [CrossRef]
- Tariq, H.; Tahir, A.; Touati, F.; Al-Hitmi, M.; Mnaouer, A.B.; Crescini, D. Structural Health Monitoring and Installation Scheme deployment using Utility Computing Model. In Proceedings of the 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS), Bern, Switzerland, 20–22 December 2018. [Google Scholar] [CrossRef]
- Mehrpooya, A.; Saberi-Movahed, F.; Azizizadeh, N.; Rezaei-Ravari, M.; Eftekhari, M.; Tavassoly, I. High dimensionality reduction by matrix factorization for systems pharmacology. Brief. Bioinform. 2021, 23, bbab410. [Google Scholar] [CrossRef]
- Tariq, H.; Touati, F.; Al-Hitmi, E.; Crescini, D.; Mnaouer, A.B. Design and Implementation of Programmable Multi-parametric 4-Degrees of Freedom Seismic Waves Ground Motion Simulation IoT Platform. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019. [Google Scholar] [CrossRef]
- Sadeghi, G.; Najafzadeh, M.; Ameri, M.; Jowzi, M. A case study on copper-oxide nanofluid in a back pipe vacuum tube solar collector accompanied by data mining techniques. Case Stud. Therm. Eng. 2022, 32, 101842. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Oliveto, G. More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency. Soft Comput. 2022, 25, 5723–5746. [Google Scholar] [CrossRef]
- Tariq, H.; Abdarazzak, A.; Farid, T.; Mohammed, A.E.A.; Damiano, C.; Adel, B.M. An Autonomous Multi-Variable Outdoor Air Quality Mapping Wireless Sensors IoT Node for Qatar. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020. [Google Scholar] [CrossRef]
- Geiss, O. Effect of Wearing Face Masks on the Carbon Dioxide Concentration in the Breathing Zone. Aerosol Air Qual. Res. 2021, 21, 200403. [Google Scholar] [CrossRef]
- Michelle, S.M.; Carin, D.L.; Matthew, T.; Amanda, C.; Jonathan, J.Y. Carbon dioxide increases with face masks but remains below short-term NIOSH limits. BMC Infect. Dis. 2021, 21, 354. [Google Scholar]
- Tariq, H.; Abdaoui, A.; Touati, F.; Al-Hitmi, E.; Crescini, D.; Mnaouer, A.B. Real-time Gradient-Aware Indigenous AQI Estimation IoT Platform. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1666–1673. [Google Scholar] [CrossRef]
- Tariq, H.; Abdaoui, A.; Touati, F.; Al-Hitmi, E.; Crescini, D.; Mnaouer, A.B. A Real-time Gradient Aware Multi-Variable Handheld Urban Scale Air Quality Mapping IoT System. In Proceedings of the IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Hammamet, Tunisia, 7–10 June 2020. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Al-Mukhtar, M.; Kushwaha, N.L.; Al-Ansari, N.; Vishwakarma, D.K. Forecasting monthly pan evaporation using hybrid additive regression and data-driven models in a semi-arid environment. Appl. Water Sci. 2023, 13, 42. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Raza, A.; Hu, Y.; Al-Ansari, N.; Kushwaha, N.L.; Srivastava, A.; Vishwakarma, D.K.; Zubair, M. Data intelligence and hybrid metaheuristic algorithms-based estimation of reference evapotranspiration. Appl. Water Sci. 2022, 12, 152. [Google Scholar] [CrossRef]
- Singh, V.K.; Panda, K.C.; Sagar, A.; Al-Ansari, N.; Duan, H.-F.; Paramaguru, P.K.; Vishwakarma, D.K.; Kumar, A.; Kumar, D.; Kashyap, P.S.; et al. Novel Genetic Algorithm (GA) based hybrid machine learning-pedotransferFunction (ML-PTF) for prediction of spatial pattern of saturated hydraulicconductivity. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1082–1099. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Ali, R.; Al-Ansari, N.; Vishwakarma, D.K.; Kushwaha, K.S.; Panda, K.C.; Sagar, A.; Mirzania, E.; Elbeltagi, A.; et al. An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability 2022, 14, 8209. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Kumar, M.; Kushwaha, N.L.; Pande, C.B.; Ditthakit, P.; Vishwakarma, D.K.; Subeesh, A. Drought indicator analysis and forecasting using data driven models: Case study in Jaisalmer, India. Stoch. Environ. Res. Risk Assess. 2022, 37, 113–131. [Google Scholar] [CrossRef]
- Shukla, R.; Kumar, P.; Vishwakarma, D.K.; Ali, R.; Kumar, R.; Kuriqi, A. Modeling of stage-discharge using back propagation ANN-, ANFIS-, and WANN-based computing techniques. Theor. Appl. Clim. 2021, 147, 867–889. [Google Scholar] [CrossRef]
- Kushwaha, N.L.; Rajput, J.; Elbeltagi, A.; Elnaggar, A.Y.; Sena, D.R.; Vishwakarma, D.K.; Mani, I.; Hussein, E.E. Data Intelligence Model and Meta-Heuristic Algorithms-Based Pan Evaporation Modelling in Two Different Agro-Climatic Zones: A Case Study from Northern India. Atmosphere 2021, 12, 1654. [Google Scholar] [CrossRef]
Authors | Methods | Enhancements |
---|---|---|
Jiandong, C et al. (2022) [5] | LSTM with RMSE estimation | Real-time CO2 data processing |
Sofia, B. et al. (2020) [6] | DeepLMS Attendance in COVID era | CO2 and temperature forecasting with respect to COVID-19 |
Zhou, Y. et al. (2020) [7] | Regression Analysis for CO2 Emissions | CO2 and temperature co-related forecasting for COVID-19. |
Malik, A et al. (2020) [8] | Spatio-temporal analysis using parametric/non-parametric tests | Real-time data pre-processing for dual variable forecasting. |
Abbasi, S. (2014) [9] | Statistical analysis using two-component measurement error | Real-time IoT-based sensor data |
Santiago, M.-C. (2020) [10] | REG and GAM based on OLS; FFT, FFT, AVG, LOESS, and LHM based on Backfitting | Real-time IoT-sensor data for COVID-19 |
Stanislaus, S. U. (2020) [11] | Durbin-Watson test (DWT), Box-Pierce (BPT), and Ljung-Box tests (LBT), Breusch-Godfrey test (BGT), Jarque-Bera test (JBT), and Augmented Dickey-Fuller test (ADFT) | Real-time IoT sensors data for COVID-19 |
Mehrpooya, A., et al. (2022) [18] | Dimensionality reduction by matrix factorization | Dual-time series real-time sensor data |
Tariq. H. et al. (2019) [19] | 4th other stationarity and differential time-series analysis for prediction | Multi-variate time-series forecasting |
Sadeghi, G., et al. (2022) [20] | Data mining approaches for pre-processing of data forecasting | Forecasting on real-time data from COVID-19 prospective |
Najafzadeh, M. (2022) [21] | Reviewed AI-techniques for temperature forecasting | Forecasting on real-time data from COVID-19 prospective |
Tariq, H. et al. (2020) [22] | Multi-variate AQI mapping using dual time-series | Forecasting on real-time data from COVID-19 prospective |
Geiss, O [23] 2020 | Studied effect of face mask on CO2 in breathing | Forecasting on real-time IoT data |
Michelle, S. et al. (2021) [24] | Studied impact of face masks increase as per NIOSH definitions | Forecasting on real-time IoT data |
Abdaoui, A. et al. (2020) [25] | Co-variance based gradient estimation of real-time sensor data for AQI | Forecasting on real-time data from COVID-19 prospective |
Tariq, H. et al. (2019) [26] | Developed real-time CO2 and temperature sensing devices used in this work for forecasting | Forecasting on real-time data from COVID-19 prospective |
Elbeltagi, A. (2023) [27] | Additive regression for forecasting monthly data | Real-time IoT sensors data for COVID-19 forecasting |
Elbeltagi, A. (2022) [28] | Hybrid metaheuristic algorithms for reference evaporation estimation | Real-time IoT sensors data for COVID-19 forecasting |
Singha, V.K. et al. (2022) [29] | Genetic Algorithm based on hybrid machine learning pedo-transfer functions. | Real-time IoT sensors data for COVID-19 forecasting |
Singh, A.K. et al. (2022) [30] | Statistical machine learning approaches for run-off water forecasting | Real-time IoT sensors data for COVID-19 forecasting |
Elbeltagi, A. et al. (2023) [31] | Random Subspace (RSS) model and its hybridization with the M5 Pruning tree (M5P), Random Forest (RF). | Real-time IoT sensors data for COVID-19 forecasting |
Shukla, R. et al. (2022) [32] | ANN, ANFIS, and WANN for dual time-series | Real-time IoT sensors data for COVID-19 forecasting |
Kushwaha, N.L. et al. (2021) [33] | Data intelligence model and meta-heuristic algorithms for two different data sets. | Real-time IoT sensors data for COVID-19 forecasting |
Acronyms | Description |
---|---|
IoT | Internet of Things |
COVID | Corona Virus Disease |
CO2 | Carbon Dioxide |
NAAQS | National Ambient Air Quality Standards |
FFT | Fast-Fourier Transform |
REG | Regression |
DeepLMS | Deep Learning Management Systems |
TSS | Theil-Sen’s Slope |
MK | Mann-Kendall Method |
MMK | Modified Mann-Kendall Method |
KRC | Kendall Rank Correlation |
DWT | Durbin-Watson test |
BPT | Box-Pierce Test |
LBT | Ljung-Box tests |
BGT | Breusch-Godfrey test |
JBT | Jarque-Bera test |
ADFT | Augmented Dickey-Fuller test |
ARIMA | Auto-regressive moving average |
OLS | Ordinary Least Squares Regression |
LHM | Linear Hinges Model |
LOESS | Locally estimated scatterplot smoothing |
WHO | World Health Organization |
EPA | Environmental Protection Agency |
GSM | Global Service for Mobile |
AQI | Air Quality Index |
Breakpoints | AQI | Epidemiological Impact/Category | ||||||
---|---|---|---|---|---|---|---|---|
O3 (ppm) 8-h | O3 (ppm) 8-h | PM10 (µg/m3) | PM2.5 (µg/m3) | CO (ppm) | SO2 (ppm) | NO2 (ppm) | ||
0–0.064 | – | 0–54 | 0–15.4 | 0–4.4 | 0–0.034 | (2) | 0–50 | Good |
0.65–0.84 | – | 55–154 | 15.5–40.4 | 4.5–9.4 | 0.035–0.144 | (2) | 51–100 | Moderate |
0.85–0.104 | 0.125–0.164 | 155–254 | 40.5–65.4 | 9.5–12.4 | 0.145–0.224 | (2) | 101–150 | Unhealthy for sensitive groups |
0.105–0.124 | 0.165–0.204 | 255–354 | 65.5–150.4 | 12.5–15.4 | 0.225–0.304 | (2) | 151–200 | Unhealthy |
0.125–0.374 (0.155–0.404) 4 | 0.205–0.404 | 355–424 | 150.5–250.4 | 15.5–30.4 | 0.305–0.604 | 0.65–1.64 | 201–300 | Very Unhealthy |
(3) | 0.405–0.504 | 0.425–0.504 | 250.5–350.4 | 30.5–40.4 | 0.605–0.804 | 1.25–1.64 | 301–400 | Hazardous |
(3) | 0.505–0.604 | 0.505–0.604 | 350.5–500.4 | 40.5–50.4 | 0.805–1.004 | 1.65–2.04 | 401–500 | Hazardous |
Optimized Bi-Cluster Regression MLT | ||
---|---|---|
Parameters | SWL (Temperature) | OBRM3 (CO2) |
Time Series Vector | [E(AE(T, P, H, VoC, PM),t1)] | [G(AG(O3, NO2, SO2, CO), t2)] |
No. of Predictors | 11 | 11 |
RMSE | 1.0042 | 1.646 |
R-Squared | 0.97 | 1.0 |
MSE | 1.0084 | 293.98 |
MAE | 0.66226 | 10.252 |
Prediction Speed | ~5100 obs.s | ~45,000 obs/s |
Training Time | 469.28 | 28.53 |
Model Type | Step-wise Linear | Surrogate Split |
Steps | 1000 | N/A |
Iterations | N/A | 100 |
Hyperparameter | N/A | LS (1~577) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, H.; Touati, F.; Crescini, D.; Mnaouer, A.B. IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19. Atmosphere 2023, 14, 534. https://doi.org/10.3390/atmos14030534
Tariq H, Touati F, Crescini D, Mnaouer AB. IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19. Atmosphere. 2023; 14(3):534. https://doi.org/10.3390/atmos14030534
Chicago/Turabian StyleTariq, Hasan, Farid Touati, Damiano Crescini, and Adel Ben Mnaouer. 2023. "IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19" Atmosphere 14, no. 3: 534. https://doi.org/10.3390/atmos14030534
APA StyleTariq, H., Touati, F., Crescini, D., & Mnaouer, A. B. (2023). IoT-Based Bi-Cluster Forecasting Using Automated ML-Model Optimization for COVID-19. Atmosphere, 14(3), 534. https://doi.org/10.3390/atmos14030534