City-Level CH4 Emissions from Anthropogenic Sources and Its Environmental Behaviors in China’s Cold Cities
Abstract
:1. Introduction
2. Methodology
2.1. Target Region
2.2. City-Level CH4 Emission Inventory
2.2.1. Rice Cultivation Sector
2.2.2. Livestock Sector
- Enteric fermentation
- Manure management
2.2.3. Biomass Burning Sector
2.2.4. Coal Mining
2.2.5. Oil and Gas Exploitation
2.2.6. Wastewater Sector
2.2.7. Landfill
2.3. Emission Factors
3. Results and Discussion
3.1. Total CH4 Emissions in 2003–2020
3.2. Contributions of Emission Sectors
3.2.1. Agriculture Related Sectors
- CH4 emissions from rice cultivation.
- CH4 emissions from livestock.
- CH4 emissions from biomass burning.
3.2.2. Energy-Related Sectors
3.3. Impacts of Dominant Anthropogenic Emissions to Ambient CH4
3.4. Contribution of CH4 to Local GHGs Emissions
3.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; et al. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Gunnar, M.; Drew, S.; Julia, P. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change; Thomas, S., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 659–740. ISBN 9781107057999. [Google Scholar]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change; Heinz, C., Tans, P., Vesala, T., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 465–570. ISBN 9781107057999. [Google Scholar]
- Ghosh, A.; Patra, P.K.; Ishijima, K.; Umezawa, T.; Ito, A.; Etheridge, D.M.; Sugawara, S.; Kawamura, K.; Miller, J.B.; Dlugokencky, E.J.; et al. Variations in Global Methane Sources and Sinks during 1910–2010. Atmos. Chem. Phys. 2015, 15, 2595–2612. [Google Scholar] [CrossRef] [Green Version]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 Greenhouse Gases and Climate Change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höglund-Isaksson, L. Global Anthropogenic Methane Emissions 2005–2030: Technical Mitigation Potentials and Costs. Atmos. Chem. Phys. 2012, 12, 9079–9096. [Google Scholar] [CrossRef] [Green Version]
- Saunois, M.; Jackson, R.B.; Bousquet, P.; Poulter, B.; Canadell, J.G. The Growing Role of Methane in Anthropogenic Climate Change. Environ. Res. Lett. 2016, 11, 120207. [Google Scholar] [CrossRef] [Green Version]
- Bruhwiler, L.; Dlugokencky, E.; Masarie, K.; Ishizawa, M.; Andrews, A.; Miller, J.; Sweeney, C.; Tans, P.; Worthy, D. CarbonTracker-CH4: An Assimilation System for Estimating Emissions of Atmospheric Methane. Atmos. Chem. Phys. 2014, 14, 8269–8293. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.; Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; et al. Couplings between Changes in the Climate System and Biogeochemistry; Lawrence Berkeley National Lab: Berkeley, CA, USA, 2007; 90p.
- IEA. Methane Tracker; IEA: Paris, France, 2022; Available online: https://www.iea.org/data-and-statistics/data-tools/methane-tracker (accessed on 2 February 2022).
- Zhang, Y.; Fang, S.; Chen, J.; Lin, Y.; Chen, Y.; Liang, R.; Jiang, K.; Parker, R.J.; Boesch, H.; Steinbacher, M.; et al. Observed Changes in China’s Methane Emissions Linked to Policy Drivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2202742119. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, J.; Cai, B.; Liang, S. Estimation of Chinese City-Level Anthropogenic Methane Emissions in 2015. Resour. Conserv. Recycl. 2021, 175, 105861. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Bousquet, P.; Ciais, P.; Li, B.; Lin, X.; Tao, S.; Wang, Z.; Zhang, Y.; Zhou, F. Inventory of Anthropogenic Methane Emissions in Mainland China from 1980 to 2010. Atmos. Chem. Phys. 2016, 16, 14545–14562. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse Gas Emissions Intensity of Global Croplands. Nat. Clim. Change 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Yan, X.; Ohara, T.; Akimoto, H. Development of Region-Specific Emission Factors and Estimation of Methane Emission from Rice Fields in the East, Southeast and South Asian Countries. Glob. Change Biol. 2003, 9, 237–254. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, X.; Cheng, T.; Chen, J.; Yang, X.; Wang, L.; Zhang, R. A Laboratory Study of Agricultural Crop Residue Combustion in China: Emission Factors and Emission Inventory. Atmos. Environ. 2008, 42, 8432–8441. [Google Scholar] [CrossRef]
- Liu, Y.; Whitman, W.B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef]
- Zhou, J.B.; Jiang, M.M.; Chen, G.Q. Estimation of Methane and Nitrous Oxide Emission from Livestock and Poultry in China during 1949–2003. Energy Policy 2007, 35, 3759–3767. [Google Scholar] [CrossRef]
- Chen, R.R.; Wang, Y.M.; Hu, J.L.; Lin, X.G. Methane emission and mitigation strategies in animal manure management system. Acta Pedol. Sin. 2012, 49, 815–823. (In Chinese) [Google Scholar]
- Xu, D. Studies on Relationship between Water and Fertilizer Managements and Greenhouse Gas Emissions from Black Soil Rice Field in Cold Area. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2016; pp. 2–47. (In Chinese). [Google Scholar]
- Tong, C.; Wang, W.-Q.; Zeng, C.-S.; Marrs, R. Methane (CH4) Emission from a Tidal Marsh in the Min River Estuary, Southeast China. J. Environ. Sci. Health 2010, 45 Pt A, 506–516. [Google Scholar] [CrossRef]
- Ma, C.M.; Dai, E.F.; Liu, Y.C.; Wang, Y.H.; Wang, F. Methane fugitive emissions from coal mining and post-mining activities in China. Resour. Sci. 2020, 42, 311–322. [Google Scholar] [CrossRef]
- NDRC (The National Development and Reform Commission). The People’s Republic of China National Greenhouse Gas Inventory; China Environmental Press: Beijing, China, 2014. [Google Scholar]
- Zheng, S.; Wang, Y.A.; Wang, Z.Y. Methane emissions to atmosphere from coal mine in China. Saf. Coal Mines 2006, 36, 29–33. (In Chinese) [Google Scholar]
- Tian, H.; Zhao, D.; Wang, Y. Emission inventories of atmospheric pollutants discharged from biomass burning in China. Acta Sci. Circumstantiae 2011, 31, 349–357. [Google Scholar]
- Jia, X.Q. Study on Environment Impact and Landscape Change of the Open-Pit Coal Mining Area Along Gulian River. Ph.D. Thesis, China University of Geoscience, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Xu, Z. Research on Deep Resources Mining Scheme of Yilan Open Pit Coal Mine. Ph.D. Thesis, Liaoning Project Technology University, Shenyang, China, 2013. (In Chinese). [Google Scholar]
- Schwietzke, S.; Griffin, W.M.; Matthews, H.S.; Bruhwiler, L.M.P. Global Bottom-Up Fossil Fuel Fugitive Methane and Ethane Emissions Inventory for Atmospheric Modeling. ACS Sustain. Chem. Eng. 2014, 2, 1992–2001. [Google Scholar] [CrossRef] [Green Version]
- Schwietzke, S.; Griffin, W.M.; Matthews, H.S.; Bruhwiler, L.M. Natural Gas Fugitive Emissions Rates Constrained by Global Atmospheric Methane and Ethane. Environ. Sci. Technol. 2014, 48, 7714–7722. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Study on Optimization Model and Performance Evaluation System of Urban Sewage Treatment in Northeast China. Ph.D. Thesis, HIT (Harbin Institute of Technology), Harbin, China, 2015. (In Chinese). [Google Scholar]
- Du, W. Primary Study on Greenhouse Gas—CH4 Emission from MSW Landfill. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2006. (In Chinese). [Google Scholar]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced Carbon Emission Estimates from Fossil Fuel Combustion and Cement Production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.X.; Du, W.P.; Lu, S.Q.; Zhang, Z.G.; Zhang, E.S.; Wu, J.G.; Ren, Z.H. Methane Emission from Municipal Solid Waste in China. Adv. Clim. Chang. Res. 2006, 2, 269–272. [Google Scholar]
- Hook, S.E.; Wright, A.-D.G.; McBride, B.W. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.C.; Xie, T.Y.; Wang, R.; Tan, Z.L. Differences of Enteric Methane Emissions from Dairy Cows between Winter and Spring. Hunan Agric. Sci. 2015, 2, 50–54. (In Chinese) [Google Scholar]
- Ge, P. Methane oxidation capacity of landfill cover loess and its impact factors. China Environ. Sci. 2015, 2, 484–492. [Google Scholar]
- Gong, S.; Shi, Y. Evaluation of Comprehensive Monthly-Gridded Methane Emissions from Natural and Anthropogenic Sources in China. Sci. Total Environ. 2021, 784, 147116. [Google Scholar] [CrossRef]
- Fang, S.; Tans, P.P.; Yao, B.; Luan, T.; Wu, Y.; Yu, D. Study of Atmospheric CO2 and CH4 at Longfengshan WMO/GAW Regional Station: The Variations, Trends, Influence of Local Sources/Sinks, and Transport. Sci. China Earth Sci. 2017, 60, 1886–1895. [Google Scholar] [CrossRef]
- Ruckstuhl, A.F.; Henne, S.; Reimann, S.; Steinbacher, M.; Vollmer, M.K.; O’Doherty, S.; Buchmann, B.; Hueglin, C. Robust Extraction of Baseline Signal of Atmospheric Trace Species Using Local Regression. Atmos. Meas. Tech. 2012, 5, 2613–2624. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, S.; Wu, X.; Sun, Y.; Hou, X.; Zhao, S. Temporal and spatial dynamics in the carbon footprint and its influencing factors of farmland ecosystems in Yunnan Province. Acta Ecol. Sin. 2018, 38, 8822–8834. [Google Scholar] [CrossRef]
Sectors | Emission Factors | Units | ||
---|---|---|---|---|
Rice cultivation | With organic input | 0.25 | g CH4 m−2 day−1 | |
Without organic input | 0.12 | |||
Livestock | Species | Enteric Fermentation | Manure Management | |
Dairy cattle | 65.3 | 9.0 | kg CH4 head−1 year−1 | |
Nondairy cattle | 45.2 | 0.8 | ||
Buffalo | 60.8 | 1.5 | ||
Sheep | 3.1 | 0.1 | ||
Goats | 2.7 | 0.1 | ||
Swine | 0.5 | 0.8 | ||
Horse | 13.5 | 0.9 | ||
Donkey | 7.5 | 0.5 | ||
Mule | 7.5 | 0.5 | ||
Biomass Burning | Corn Straw | Open Burning | 3.62 ± 2.20 | kg CH4 t−1 |
Biomass Fuel | 3.89 ± 2.20 | |||
Fuel Wood | 2.77 ± 1.80 | |||
Coal Mining | Underground Mining | 8.7636 | kg CH4 t−1 | |
Strip Mining | 1.675 | |||
Handling & Processing Transportation | 0.8308 | |||
Oil and Gas Exploitation | Oil | 2.9 | kg CH4 m−3 | |
Gas | 0.35 | kt CH4 PJ−1 | ||
Landfill | 0.018 | |||
Wastewater sector | B0 | MCFs | ||
0.25 kg CH4 (kg COD)−1 | 0.165 | |||
0.467 | ||||
0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Yao, W.; Zhao, Y.; Wang, M.; Chen, R.; Zhu, Z.; Gao, Z.; Li, C.; Liang, M.; Yu, D. City-Level CH4 Emissions from Anthropogenic Sources and Its Environmental Behaviors in China’s Cold Cities. Atmosphere 2023, 14, 535. https://doi.org/10.3390/atmos14030535
Song W, Yao W, Zhao Y, Wang M, Chen R, Zhu Z, Gao Z, Li C, Liang M, Yu D. City-Level CH4 Emissions from Anthropogenic Sources and Its Environmental Behaviors in China’s Cold Cities. Atmosphere. 2023; 14(3):535. https://doi.org/10.3390/atmos14030535
Chicago/Turabian StyleSong, Weiwei, Wanying Yao, Yixuan Zhao, Mengying Wang, Ruihan Chen, Zhiyu Zhu, Zhi Gao, Chunhui Li, Miao Liang, and Dajiang Yu. 2023. "City-Level CH4 Emissions from Anthropogenic Sources and Its Environmental Behaviors in China’s Cold Cities" Atmosphere 14, no. 3: 535. https://doi.org/10.3390/atmos14030535
APA StyleSong, W., Yao, W., Zhao, Y., Wang, M., Chen, R., Zhu, Z., Gao, Z., Li, C., Liang, M., & Yu, D. (2023). City-Level CH4 Emissions from Anthropogenic Sources and Its Environmental Behaviors in China’s Cold Cities. Atmosphere, 14(3), 535. https://doi.org/10.3390/atmos14030535