Investigating the Incorporation of Idle, High Idle, and Driving Acceleration NOx Emissions Tests into the Periodic Technical Inspection Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Equipment
2.2. Test Vehicles and Fuel
2.3. Test Procedures
2.4. Data Processing
3. Results
3.1. Investigation into the Repeatability of the Test Methods
3.2. Investigation into NOx Test Types and Reporting Metrics
3.2.1. Concentration Metrics for Emissions Reporting
3.2.2. Comparing Maximum Concentrations to Mean Concentrations
3.2.3. Comparing between Test Types
3.3. Fleet-Average Results and Options for Pass/Fail Thresholds
3.4. Agreement between Pass/Fail Results for Individual Vehicles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boulter, P.; Buekenhoudt, P.; Nolte, C.; Ost, T.; Schulz, W.H.; Weitz, K.-U.; Afflerbach, G.; Förster, C.; Stricker, P.; Mäurer, H.-J.; et al. CITA TEDDIE A New Roadworthiness Emission Test for Diesel Vehicles Involving NO, NO 2 and PM Measurements; CITA: Brussels, Belgium, 2011; pp. 1–105. Available online: https://citainsp.org/studies/4274-2/ (accessed on 11 February 2021).
- Committee on the Medical Effects of Air Pollutants (COMEAP). Statement on the Evidence for the Effects of Nitrogen Dioxide on Health; Public Health England: London, UK, 2015; pp. 1–10. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/411756/COMEAP_The_evidence_for_the_effects_of_nitrogen_dioxide.pdf (accessed on 16 January 2023).
- Finlayson-Pitts, B.J.; Pitts, J.N. Atmospheric Chemistry of Tropospheric Ozone Formation: Scientific and Regulatory Implications. Air Waste 1993, 43, 1091–1100. [Google Scholar] [CrossRef]
- Jonson, J.E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C. Impact of Excess NOx Emissions from Diesel Cars on Air Quality, Public Health and Eutrophication in Europe. Environ. Res. Lett. 2017, 12, 094017. [Google Scholar] [CrossRef] [Green Version]
- Zeldovich, J.B. Oxidation of Nitrogen in Combustion and Explosion. Comptes Rendus–Académie Sci. URSS 1946, 51, 217–220. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals, 1st ed.; McGraw-Hill Mechanical Engineering Series; McGraw-Hill: New York, NY, USA, 1988; ISBN 0-07-028637-X. [Google Scholar]
- CITA. Monitoring of NOx Emissions as Part of the PTI; International Motor Vehicle Inspection Committee (CITA): Brussels, Belgium, 2022; pp. 1–51. Available online: https://citainsp.org/2022/05/11/monitoring-of-nox-emissions-as-part-of-the-pti/ (accessed on 11 May 2022).
- Fernández, E.; Valero, A.; Alba, J.J.; Ortego, A. A New Approach for Static NOx Measurement in PTI. Sustainability 2021, 13, 13424. [Google Scholar] [CrossRef]
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A Review of the European Passenger Car Regulations—Real Driving Emissions vs Local Air Quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- Buekenhoudt, P.; Müller, G.; Mäurer, H.-J.; González, A.S.; Stephenson, J.; Multari, A.; Pettelet, G.; Schulz, W.H. SET II Project—Sustainable Emission Test for Diesel Vehicles Involving NOx Measurements; International Motor Vehicle Inspection Committee (CITA): Brussels, Belgium, 2019; pp. 1–87. Available online: https://citainsp.org/2019/04/01/the-new-cita-set-ii-project/ (accessed on 16 July 2022).
- Posada, F.; Yang, Z.; Muncrief, R. Review of Current Practices and New Developments in Heavy-Duty Vehicle Inspection and Maintenance Programs; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2015; pp. 1–51. Available online: http://www.theicct.org/sites/default/files/publications/HDV%20insp-maint%20White%20Paper%20v2.pdf (accessed on 30 December 2022).
- Jereb, S.; Henderson, K.; Vrabic, J.; Bain, M.; Dolezal, J.; Roessing, E.; Dos Santos, J.N.C.; Simeonova, R.; Otto, J. The EU’s Response to the “Dieselgate” Scandal; European Court of Auditors: Luxembourg, 2019; Available online: https://www.eca.europa.eu/lists/ecadocuments/brp_vehicle_emissions/brp_vehicle_emissions_en.pdf (accessed on 3 March 2023).
- Sher, E. Handbook of Air Pollution from Internal Combustion Engines: Pollutant Formation and Control; Academic Press: Boston, MA, USA, 1998; ISBN 978-0-12-639855-7. [Google Scholar]
- Sanchez, F.P.; Bandivadekar, A.; German, J. Estimated Cost of Emission Reduction Technologies for Light-Duty Vehicles; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2012; Available online: https://theicct.org/wp-content/uploads/2021/06/ICCT_LDVcostsreport_2012.pdf (accessed on 1 March 2023).
- Majewski, W.A. NOx Adsorber Applications. Available online: https://dieselnet.com/tech/cat_nox-trap_applications.php (accessed on 1 March 2023).
- Morimune, T.; Yamaguchi, H.; Yasukawa, Y. Study of Catalytic Reduction of NOx in Exhaust Gas from a Diesel Engine. Exp. Therm. Fluid Sci. 1998, 18, 220–230. [Google Scholar] [CrossRef]
- Johnson, T.V. Vehicular Emissions in Review. SAE Int. J. Engines 2012, 5, 216–234. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, T.; Schmidt, H.; Svagin, J.; Johansen, J.; Oechsle, J.; Bradley, R. Ammonia Storage and Delivery Systems for Automotive NOx Aftertreatment; SAE International: Warrendale, PA, USA, 2008; Available online: https://www.sae.org/publications/technical-papers/content/2008-01-1027/ (accessed on 1 March 2023).
- Ligterink, N.E.; Elstgeest, M.; Frateur, T.; de Ruiter, J.M.; Paschinger, P. Approaches for Detecting High NOx Emissions of Aged Petrol Cars during the Periodic Technical Inspection; TNO: The Hague, The Netherlands, 2022; pp. 1–19. Available online: http://resolver.tudelft.nl/uuid:b5d127c3-303c-4013-b1ac-c9ac01f66e2d (accessed on 8 December 2022).
- Kadijk, G.; Elstgeest, M.; Vroom, Q.; Paalvast, M.; Ligterink, N.; van der Mark, P. On Road Emissions of 38 Petrol Vehicles with High Mileages; TNO: The Hague, The Netherlands, 2020; pp. 1–88. Available online: https://publications.tno.nl/publication/34637926/q4zWim/TNO-2020-R11883.pdf (accessed on 16 January 2023).
- Chen, Y.; Borken-Kleefeld, J. NOx Emissions from Diesel Passenger Cars Worsen with Age. Environ. Sci. Technol. 2016, 50, 3327–3332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regulation (EU) 2018/858 of the European Parliament and of the Council of 30 May 2018 on the Approval and Market Surveillance of Motor Vehicles and Their Trailers, and of Systems, Components and Separate Technical Units Intended for Such Vehicles, Amending Regulations (EC) No 715/2007 and (EC) No 595/2009 and Repealing Directive 2007/46/EC (Text with EEA Relevance.). 2018. Available online: http://data.europa.eu/eli/reg/2018/858/oj/eng (accessed on 1 March 2023).
- Directive 2014/45/EU of the European Parliament and of the Council of 3 April 2014 on Periodic Roadworthiness Tests for Motor Vehicles and Their Trailers and Repealing Directive 2009/40/EC (Text with EEA Relevance). 2014. Available online: http://data.europa.eu/eli/dir/2014/45/oj/eng (accessed on 1 March 2023).
- European Commission. Commission Regulation (EU) 2017/1151 of 1 June 2017. 2017. Available online: http://data.europa.eu/eli/reg/2017/1151/oj/eng (accessed on 1 March 2023).
- López, V.D.; Sánchez, S.S.; Santamaria, E.O.; Cuadros, S.S. PTI Methodology for Inspection of NOx and Particle Matter Emissions; Universidad Carlos III de Madrid: Getafe, Spain, 2022; pp. 1–35. Available online: https://aeca-itv.com/wp-content/uploads/2022/06/PTI-METHODOLOGY-INSPECTION-NOx-AND-PARTICLE-vf-eng-GB_DocEjec.pdf (accessed on 4 August 2022).
- Fernández, E.; Ortego, A.; Valero, A.; Alba, J.J. Suitability Assessment of NOx Emissions Measurements with PTI Equipment. Vehicles 2022, 4, 917–941. [Google Scholar] [CrossRef]
- Yang, L. China’s Vehicle Emissions Inspection and Maintenance Program; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2020; Available online: https://theicct.org/wp-content/uploads/2021/06/China-IM-policy-update-dec2020.pdf (accessed on 4 January 2023).
- Barlow, T.; Müller, G.; Mäurer, H.-J.; Buekenhoudt, P.; Schulz, W.H.; Geis, I.; Multari, A.; Petelet, G.; Petelet, G. SET I—Final Report: Sustainable Emission Test; International Motor Vehicle Inspection Committee (CITA): Brussels, Belgium, 2015; p. 103. Available online: https://citainsp.org/studies/4259-2/ (accessed on 16 July 2020).
- Pucher, E.; Gruber, A. New Universal Short Test Procedure for NOx and Particle Number at Periodic Technical Inspection. Presented at the CITA Working Group 2, ÖAMTC, Vienna. 2019. Available online: http://hdl.handle.net/20.500.12708/95302 (accessed on 1 March 2023).
- Joint Research Centre. PTI–DeNOx Systems Monitoring. Presented at the CITA Task Force on Emissions on 1 February 2023, Web/Online Meeting. 2023. Available online: https://citainsp.org/ (accessed on 2 March 2023).
- Institut Teknologisk. Application of OBD Equipment for Inspection of Heavy Trucks; Institut Teknologisk: Ribe, Denmark, 2021; Available online: https://fstyr.dk/en/-/media/FSTYR-lister/Publikationer/Application-of-OBD-final.pdf (accessed on 16 January 2023).
- Buekenhoudt, P.; Meyer, P.D.; Emanuel, S.; Stevens, M.; Cornelis, E.; Bouazzaoui, Y.; Vanhout, S.; Vaneerdeweg, R. Ontwikkeling van een NOx-Emissietest Voor Gebruik Tijdens de Technische Voertuigkeuring; Vlaamse Milieumaatschappij: Aalst, Belgium, 2022; Available online: https://www.vmm.be/publicaties/ontwikkeling-van-een-nox-emissietest-voor-gebruik-tijdens-de-technische-voertuigkeuring (accessed on 31 January 2023).
- Norris, J. Low Emission Diesel Research. 2005. Available online: http://www.transportoffice.gov.uk/crt/repository/Low%20Emission%20Diesel%20Research.pdf (accessed on 16 February 2023).
- Janssen, J.A. Stationary_NOx_Measurements—A Way to Detect High NOx Emitting Vehicles. 2020. Available online: https://www.fstyr.dk/da/-/media/FSTYR-lister/Publikationer/200707_Stationary-NOxMeasurements—A-way-to-detect-high-NOx-emitting-vehicles_ROHA_FINAL.pdf (accessed on 16 February 2023).
- KNESTEL. Kick-Down-NOx Method for PTI NOx Measurement. TRACE-GAS. 2021. Available online: https://www.trace-gas.com/kick-down-nox-method-for-pti-nox-measurement-by-knestel/ (accessed on 25 March 2022).
- Lipp, S.; Blassnegger, J. New Procedure of NOx Emission Test (AU) in a Future Periodic Technical Inspection (PTI); FVT and ÖAMTC: Graz, Austria, 2021; Available online: https://graz.pure.elsevier.com/en/publications/new-procedure-of-nox-emission-test-au-in-a-future-periodic-techni (accessed on 1 March 2023).
- Yang, L.; Bernard, Y.; Dallmann, T. Technical Considerations for Choosing a Metric for Vehicle Remote-Sensing Regulations; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2019; Available online: https://theicct.org/publication/technical-considerations-for-choosing-a-metric-for-vehicle-remote-sensing-regulations/ (accessed on 23 February 2023).
- 3DATX Corp ParSYNC® PLUS. Available online: https://3datx.com/parsync/ (accessed on 31 January 2023).
- Sandhu, G.S.; Frey, H.C. Effects of Errors on Vehicle Emission Rates from Portable Emissions Measurement Systems. Transp. Res. Rec. 2013, 2340, 10–19. [Google Scholar] [CrossRef]
Vehicle ID Range | Protocol Version (Time Taken) | Idle | High Idle | Acceleration |
---|---|---|---|---|
B0001–B0027 (27 vehicles) | V01 (15 min) | 3 consecutive identical repetitions | - | 3 similar, consecutive short drives |
B0028–B0105 (78 vehicles) | V02 (20 min) | 3 consecutive identical repetitions | 3 consecutive identical repetitions | 3 similar, consecutive short drives |
B0106–B0376 (271 vehicles) | V03 1 (5 min) | 2 non-consecutive identical repetitions | 1, as per PTI requirements, for diesel or petrol vehicles | 3 non-similar, non- consecutive short drives 2 |
B0377–B0592 (216 vehicles) | V04 1 (5 min) | 2 non-consecutive identical repetitions | 1, as per PTI requirements, for diesel or petrol vehicles | 3 non-similar, non- consecutive short drives 2 |
B0593–B0607 (15 vehicles) | V05 1 (7 min) | 2 non-consecutive identical repetitions | 1, as per PTI requirements, for diesel or petrol vehicles | 3 non-similar, non- consecutive short drives 2 |
Test | Quantity | Mean Value | Std. Deviation | Std. Error | Coef. of Variation |
---|---|---|---|---|---|
Idle | Average NOx (ppm) | 75.25 | 14.31 | 8.29 | 18.65% |
NOx (mg) | 118.92 | 14.39 | 8.41 | 25.70% | |
Average Engine RPM | 807.21 | 2.05 | 1.18 | 0.24% | |
Average Load (%) | 24.90 | 1.23 | 0.72 | 4.70% | |
Average Commanded EGR (%) | 18.75 | 3.26 | 1.96 | 44.71% | |
Constant High Idle | Average NOx (ppm) | 81.82 | 12.92 | 7.46 | 21.04% |
NOx (mg) | 107.38 | 14.45 | 8.35 | 25.67% | |
Average Engine RPM | 2331.66 | 77.01 | 44.49 | 3.30% | |
Average Load (%) | 19.39 | 1.16 | 0.67 | 6.42% | |
Average Commanded EGR (%) | 19.89 | 1.34 | 0.77 | 34.32% | |
Acceleration | Average NOx (ppm) | 183.81 | 43.52 | 25.14 | 33.30% |
Maximum NOx (ppm) | 351.25 | 90.84 | 52.47 | 31.16% | |
NOx (mg) | 139.02 | 56.70 | 32.73 | 43.51% | |
Average Engine RPM | 1361.79 | 123.21 | 71.44 | 10.76% | |
Maximum Engine RPM | 2066.35 | 172.88 | 100.74 | 9.62% | |
Average Load (%) | 32.20 | 4.15 | 2.40 | 17.31% | |
Maximum Load (%) | 65.69 | 6.99 | 4.04 | 12.36% | |
Average Commanded EGR (%) | 22.25 | 2.57 | 1.48 | 23.44% | |
Maximum Commanded EGR (%) | 41.66 | 3.98 | 2.30 | 12.40% | |
Average VSP_pos (kW/tonne) | 30.77 | 8.94 | 5.17 | 28.73% | |
Maximum VSP_pos (kW/tonne) | 69.85 | 16.99 | 9.83 | 24.37% | |
vapos 95 (m2/s3) | 58.80 | 15.56 | 9.00 | 26.53% | |
RPA (m/s2) | 2.92 | 0.58 | 0.34 | 20.32% |
Fuel Type | Emission Standard | Metric | Idle Test Mean NOx (ppm) | Constant High Idle Test Mean NOx (ppm) 1 | Rapid High Idle Test Mean NOx (ppm) 2 | Acceleration Mean Test NOx (ppm) |
---|---|---|---|---|---|---|
Diesel | Euro 4 | Mean | 142 | 185 | 135 | 207 |
1 Std. Deviation | 228 | 253 | 197 | 326 | ||
2 Std. Deviation | 315 | 320 | 258 | 444 | ||
95th Percentile | 298 | 228 | 240 | 445 | ||
Euro 5 | Mean | 154 | 156 | 133 | 205 | |
1 Std. Deviation | 257 | 228 | 197 | 311 | ||
2 Std. Deviation | 359 | 300 | 261 | 416 | ||
95th Percentile | 306 | 312 | 234 | 400 | ||
Euro 6 | Mean | 71 | 113 | 90 | 116 | |
1 Std. Deviation | 146 | 170 | 152 | 218 | ||
2 Std. Deviation | 221 | 227 | 214 | 321 | ||
95th Percentile | 226 | 186 | 228 | 362 | ||
Petrol | Euro 4 | Mean | 27 | 75 | NA | 52 |
1 Std. Deviation | 74 | 199 | NA | 155 | ||
2 Std. Deviation | 121 | 324 | NA | 259 | ||
95th Percentile | 130 | 392 | NA | 163 | ||
Euro 5 | Mean | 26 | 49 | NA | 93 | |
1 Std. Deviation | 103 | 141 | NA | 406 | ||
2 Std. Deviation | 180 | 232 | NA | 719 | ||
95th Percentile | 138 | 220 | NA | 387 | ||
Euro 6 | Mean | 17 | 24 | NA | 24 | |
1 Std. Deviation | 56 | 69 | NA | 66 | ||
2 Std. Deviation | 95 | 115 | NA | 108 | ||
95th Percentile | 74 | 138 | NA | 132 |
Quantity | Test Type Combination | Total | Diesel | Petrol |
---|---|---|---|---|
Overall agreement (i.e., pass/pass or fail/fail) between results for different test type combinations | Idle and constant high idle | 92.7% (245) | 92.5% (40) | 92.7% (205) |
Idle and rapid high idle | 95.7% (209) | 95.7% (209) | NA (0) | |
Idle and acceleration | 94.7% (475) | 96.6% (267) | 92.3% (208) | |
Constant high idle and acceleration | 91.0% (245) | 85.0% (40) | 92.2% (205) | |
Rapid high idle and acceleration | 95.7% (209) | 95.7% (209) | NA (0) | |
Agreement between fail results only (i.e., fail/fail) for different test type combinations | Idle and constant high idle | 33.3% (27) | 57.1% (7) | 25.0% (20) |
Idle and rapid high idle | 40.0% (15) | 40.0% (15) | NA (0) | |
Idle and acceleration | 35.9% (39) | 52.6% (19) | 20.0% (20) | |
Constant high idle and acceleration | 28.0% (25) | 33.3% (6) | 26.3% (19) | |
Rapid high idle and acceleration | 46.7% (15) | 46.7% (15) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, D.; Sandhu, G.S.; Nilsson, T.; Bjurkvist, S. Investigating the Incorporation of Idle, High Idle, and Driving Acceleration NOx Emissions Tests into the Periodic Technical Inspection Procedures. Atmosphere 2023, 14, 536. https://doi.org/10.3390/atmos14030536
Thomas D, Sandhu GS, Nilsson T, Bjurkvist S. Investigating the Incorporation of Idle, High Idle, and Driving Acceleration NOx Emissions Tests into the Periodic Technical Inspection Procedures. Atmosphere. 2023; 14(3):536. https://doi.org/10.3390/atmos14030536
Chicago/Turabian StyleThomas, Daisy, Gurdas S. Sandhu, Thomas Nilsson, and Stefan Bjurkvist. 2023. "Investigating the Incorporation of Idle, High Idle, and Driving Acceleration NOx Emissions Tests into the Periodic Technical Inspection Procedures" Atmosphere 14, no. 3: 536. https://doi.org/10.3390/atmos14030536
APA StyleThomas, D., Sandhu, G. S., Nilsson, T., & Bjurkvist, S. (2023). Investigating the Incorporation of Idle, High Idle, and Driving Acceleration NOx Emissions Tests into the Periodic Technical Inspection Procedures. Atmosphere, 14(3), 536. https://doi.org/10.3390/atmos14030536