Characterization of Soot Loading and Filtration Efficiency of a Gasoline Particulate Filter with Photoacoustic Sensor and Particle Number Counting Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Layout
2.2. Photoacoustic Sensor System
2.3. Particle Number Counting System
3. Results
3.1. Pressure Drop of GPF Samples in Clean State
3.2. Soot Loading of GPF Samples
3.3. Filtration Efficiencies of GPF Samples in Terms of SPN10 and SPN23
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | AVL Particle Counter |
CAST | Combustion aerosol standard |
CPC | Condensation particle counter |
CS | Catalytic stripper |
CVS | Constant volume sampler |
DPF | Diesel particulate filter |
EC | Elemental carbon |
ET | Evaporation tube |
G-DI | Gasoline direct injection |
GPF | Gasoline particulate filter |
GTR | Global technical regulation |
HD | Heavy-duty |
HEPA | High efficiency particulate air |
ISO | International organization for standardization |
MSS2 | AVL Micro Soot Sensor 2 |
NEDC | New European driving cycle |
NRMM | Non-road mobile machinery |
LD | Light-duty |
OC | Organic carbon |
PCRF | Particle number concentration reduction factor |
PEMS | Portable emissions measurement system |
PM | Particulate matter |
PMP | Particle measurement programme |
PND | Particle number diluter |
PNC | Particle number counter |
RDE | Real driving emission |
SPN10 | Solid particle number in diameter > 10 nm |
SPN23 | Solid particle number in diameter > 23 nm |
SV | Space velocity |
TOT | Thermal and optical transmittance |
UNECE | United Nations Economic Commission for Europe |
VPR | Volatile particle remover |
a | Filter cell width |
dc | Loaded collector diameter |
dp | Particle diameter |
E | Grade collection efficiency |
F | Friction factor equal to 28.454 |
g(ε) | Geometric function by Kuwabara |
k | Filter wall permeability |
L | Filter length |
NR | Interception parameter |
Pe | Peclet number |
Q | Exhaust volumetric flow rate |
Re | Reynolds number |
U | Entrance or exit average channel velocity |
uw | Filtration velocity |
Vtrap | Filter volume |
ws | Filter wall thickness |
β | Forchheimer coefficient in porous wall |
ΔP | Pressure drop induced by a filter |
Ε | Filter wall porosity |
ζ | Contraction/expansion inertial losses coefficient |
ηD | Collection efficiency due to Brownian diffusion |
ηDR | Combined collection efficiency |
ηR | Collection efficiency due to interception |
μ | Exhaust dynamic viscosity |
ξ | Suction/injection correction factor |
ρ | Exhaust gas density |
References
- Pope, C.A., III; Coleman, N.; Pond, Z.A.; Burnett, R.T. Fine Particulate Air Pollution and Human Mortality: 25+ Years of Cohort Studies. Environ. Res. 2020, 183, 108924. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Künzli, N.; Hoffmann, B. Health Effects of Ultrafine Particles: A Systematic Literature Review Update of Epidemiological Evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-S.; Ryu, M.H.; Carlsten, C. Ultrafine Particles: Unique Physicochemical Properties Relevant to Health and Disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- European Commission. Council Directive 91/441/EEC of 26 June 1991 Amending Directive 70/220/EEC on the Approximation of the Laws of the Member States Relating to Measures to Be Taken against Air Pollution by Emissions from Motor Vehicles. Off. J. Eur. Union 1991. [Google Scholar]
- European Commission. Commission Regulation (EU) 2016/646 of 20 April 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). Off. J. Eur. Union 2016. [Google Scholar]
- European Commission. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information (Text with EEA Relevance). Off. J. Eur. Union 2007, 171. [Google Scholar]
- Konstandopoulos, A.G.; Johnson, J.H. Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency. SAE Tech. Pap. 1989, 890405. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Skaperdas, E.; Warren, J.; Allansson, R. Optimized Filter Design and Selection Criteria for Continuously Regenerating Diesel Particulate Traps. SAE Tech. Pap. 1999, 279–288. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Kostoglou, M. Periodically Reversed Flow Regeneration of Diesel Particulate Traps. SAE Tech. Pap. 1999, 289–302. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Kostoglou, M.; Skaperdas, E.; Papaioannou, E.; Zarvalis, D.; Kladopoulou, E. Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging. SAE Tech. Pap. 2000, 683–705. [Google Scholar] [CrossRef]
- Masoudi, M.; Konstandopoulos, A.G.; Nikitidis, M.S.; Skaperdas, E.; Zarvalis, D.; Kladopoulou, E.; Altiparmakis, C. Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters. SAE Tech. Pap. 2001, 650–656. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Skaperdas, E.; Masoudi, M. Microstructural Properties of Soot Deposits in Diesel Particulate Traps. SAE Tech. Pap. 2002. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G. Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing. SAE Tech. Pap. 2003. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Kladopoulou, E. The Optimum Cell Density for Wall-Flow Monolithic Filters: Effects of Filter Permeability, Soot Cake Structure and Ash Loading. SAE Tech. Pap. 2004, 32–43. [Google Scholar] [CrossRef]
- Ido, T.; Ogyu, K.; Ohira, A.; Hayashi, M.; Ohno, K.; Konstandopoulos, A.G. Study on the Filter Structure of SiC-DPF with Gas Permeability for Emission Control. SAE Tech. Pap. 2005. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Kostoglou, M.; Vlachos, N.; Kladopoulou, E. Progress in Diesel Particulate Filter Simulation. SAE Tech. Pap. 2005. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Kostoglou, M.; Vlachos, N.; Kladopoulou, E. Advances in the Science and Technology of Diesel Particulate Filter Simulation. Adv. Chem. Eng. 2007, 33, 213–294. [Google Scholar] [CrossRef]
- Konstandopoulos, A.G.; Papaioannou, E. Update on the Science and Technology of Diesel Particulate Filters. KONA Powder Part. J. 2008, 26, 36–65. [Google Scholar] [CrossRef] [Green Version]
- Konstandopoulos, A.G.; Skaperdas, E.; Masoudi, M. Inertial Contributions to the Pressure Drop of Diesel Particulate Filters. SAE Tech. Pap. 2001. [Google Scholar] [CrossRef]
- Ohno, K.; Shimato, K.; Taoka, N.; Santae, H.; Ninomiya, T.; Komori, T.; Salvat, O. Characterization of SiC-DPF for Passenger Car. SAE Tech. Pap. 2000, 53–66. [Google Scholar] [CrossRef]
- Salvat, O.; Marez, P.; Belot, G. Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine. SAE Tech. Pap. 2000, 227–239. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of Automotive Nonvolatile Particle Number Emissions within the European Legislative Framework: A Review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 459/2012 of 29 May 2012 Amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) Text with EEA Relevance. Off. J. Eur. Union 2012. [Google Scholar]
- European Commission. Commission Regulation (EU) No 582/2011 of 25 May 2011 Implementing and Amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council Text with EEA Relevance. Off. J. Eur. Union 2011. [Google Scholar]
- European Commission. Regulation (EU) 2016/1628 of the European Parliament and of the Council of 14 September 2016 on Requirements Relating to Gaseous and Particulate Pollutant Emission Limits and Type-Approval for Internal Combustion Engines for Non-Road Mobile Machinery, Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013, and Amending and Repealing Directive 97/68/EC (Text with EEA Relevance). Off. J. Eur. Union 2016, 252. [Google Scholar]
- European Commission. Commission Regulation (EU) 2016/427 of 10 March 2016 Amending Regulation (EC) No 692/2008 as Regards Emissions from Light Passenger and Commercial Vehicles (Euro 6) (Text with EEA Relevance). Off. J. Eur. Union 2016. [Google Scholar]
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the Assessment of PEMS (Portable Emissions Measurement Systems) Uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Bonnel, P.; Perujo, A.; Dilara, P. Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4819. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Boger, T.; Cutler, W. Reducing Particulate Emissions in Gasoline Engines. Available online: https://www.sae.org/publications/books/content/r-471/ (accessed on 31 January 2023).
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of the State-of-the-Art of Exhaust Particulate Filter Technology in Internal Combustion Engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Johnson, T.V. Gasoline Particulate Filters—A Review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Raza, M.; Chen, L.; Leach, F.; Ding, S. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. Energies 2018, 11, 1417. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Li, Z.; Yu, L.; Wang, X.; Lu, X. Review of the State-of-the-Art of Particulate Matter Emissions from Modern Gasoline Fueled Engines. Appl. Energy 2019, 238, 1269–1298. [Google Scholar] [CrossRef]
- European Commission. Commission Proposes New Euro 7 Standards. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495 (accessed on 31 January 2023).
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Lahde, T.; Giechaskiel, B.; Martini, G. Development of Measurement Methodology for Sub 23 Nm Particle Number (PN) Measurements. SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 3, 551–560. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 Nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Vanhanen, J.; Väkevä, M.; Martini, G. Investigation of Vehicle Exhaust Sub-23 Nm Particle Emissions. Aerosol Sci. Technol. 2017, 51, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Melas, A.; Valverde, V.; Otura, M.; Martini, G. Challenging Conditions for Gasoline Particulate Filters (GPFs). Catalysts 2022, 12, 70. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Valverde, V.; Kontses, A.; Melas, A.; Martini, G.; Balazs, A.; Andersson, J.; Samaras, Z.; Dilara, P. Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts 2021, 11, 607. [Google Scholar] [CrossRef]
- Schindler, W.; Haisch, C.; Beck, H.A.; Niessner, R.; Jacob, E.; Rothe, D. A Photoacoustic Sensor System for Time Resolved Quantification of Diesel Soot Emissions. SAE Tech. Pap. 2004, 483–490. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and Accuracy of a Particle Number Measurement System. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Addendum 15: United Nations Global Technical Regulation No. 15—Amendment 6—Appendix 1; UNECE: Geneva, Switzerland, 1998; Available online: https://unece.org/transport/documents/2021/01/standards/addendum-15-united-nations-global-technical-regulation-no-15 (accessed on 31 January 2023).
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating Particle Number Measurements from the Tailpipe of Light-Duty Vehicles: The next Step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef]
- Isella, L.; Giechaskiel, B.; Drossinos, Y. Diesel-Exhaust Aerosol Dynamics from the Tailpipe to the Dilution Tunnel. J. Aerosol Sci. 2008, 39, 737–758. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Arndt, M.; Schindler, W.; Bergmann, A.; Silvis, W.; Drossinos, Y. Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide. SAE Int. J. Engines 2012, 5, 379–399. [Google Scholar] [CrossRef]
Material | Cordierite |
Diameter | 1 inch |
Length | 1 inch |
Cell structure | Square |
Cell density | 198 1/inch2 |
Wall thickness | 8.4 mil |
Wall porosity | 0.57 |
Wall pore diameter | 8.3 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, K.; Sugaya, Y.; Yamaguchi, K.; Kusaka, J.; Arndt, M.; Dardiotis, C. Characterization of Soot Loading and Filtration Efficiency of a Gasoline Particulate Filter with Photoacoustic Sensor and Particle Number Counting Systems. Atmosphere 2023, 14, 476. https://doi.org/10.3390/atmos14030476
Nakamura K, Sugaya Y, Yamaguchi K, Kusaka J, Arndt M, Dardiotis C. Characterization of Soot Loading and Filtration Efficiency of a Gasoline Particulate Filter with Photoacoustic Sensor and Particle Number Counting Systems. Atmosphere. 2023; 14(3):476. https://doi.org/10.3390/atmos14030476
Chicago/Turabian StyleNakamura, Kazuki, Yuta Sugaya, Kyohei Yamaguchi, Jin Kusaka, Michael Arndt, and Christos Dardiotis. 2023. "Characterization of Soot Loading and Filtration Efficiency of a Gasoline Particulate Filter with Photoacoustic Sensor and Particle Number Counting Systems" Atmosphere 14, no. 3: 476. https://doi.org/10.3390/atmos14030476
APA StyleNakamura, K., Sugaya, Y., Yamaguchi, K., Kusaka, J., Arndt, M., & Dardiotis, C. (2023). Characterization of Soot Loading and Filtration Efficiency of a Gasoline Particulate Filter with Photoacoustic Sensor and Particle Number Counting Systems. Atmosphere, 14(3), 476. https://doi.org/10.3390/atmos14030476