Investigation of Spatiotemporal Variation and Drivers of Aerosol Optical Depth in China from 2010 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description and Processing
2.2.1. MERRA-2 AOD Data
2.2.2. AREONET AOD Data
2.2.3. Socioeconomic Data
2.2.4. Meteorological Data
2.2.5. Vegetation Continuous Fields Data
2.3. Methodology
2.3.1. Mann–Kendall (M–K) Test
2.3.2. Trend Sustainability
2.3.3. Coefficient of Variation
2.3.4. Granger Causality Test
2.3.5. Sensitivity and Contribution Rates
3. Results
3.1. Data Validation
3.2. Seasonal and Annual Mean AOD
3.3. Temporal Trend of AOD
3.4. Analysis of Driving Factors
3.4.1. Socioeconomic Factors
3.4.2. Meteorological Factors
3.4.3. Vegetation Continuous Fields Factor
4. Discussion
4.1. Environmental Impact of AOD
4.2. Spatial and Temporal Evolutionary Characteristics of AOD
4.3. Driving Mechanism of AOD by Region
4.4. Limitation and Further Efforts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Hu, Z.; Jin, Q.; Ma, Y.; Pu, B.; Ji, Z.; Wang, Y.; Dong, W. Temporal evolution of aerosols and their extreme events in polluted Asian regions during Terra’s 20-year observations. Remote Sens. Environ. 2021, 263, 112541. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, S.; Chen, L.; Tao, J. Analysis of long-term(2000–2013) sptio-temporal aerosol distribution over Pearl River Delta region in China by using MODIS data. J. Remote Sens. 2016, 20, 1413–1423. [Google Scholar] [CrossRef]
- Sockol, A.; Small Griswold, J.D. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions. Earth Space Sci. 2017, 4, 485–505. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N. Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China. Atmos. Chem. Phys. 2017, 17, 1329–1342. [Google Scholar] [CrossRef] [Green Version]
- Li, L. A robust deep learning approach for spatiotemporal estimation of Satellite AOD and PM2.5. Remote Sens. 2020, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Lim, H.Q.; Kaskaoutis, D.G.; Cracknell, A.P. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmos. Res. 2014, 138, 223–239. [Google Scholar] [CrossRef]
- Pang, S.; Lin, Y.; Tang, C.; Zhang, L.; Tian, P. Spatial distribution and trend of global AOD and dust AOD based on MERRA2 reanalysis data. J. Lanzhou Univ. (Nat. Sci. Ed.) 2021, 57, 54–62. [Google Scholar] [CrossRef]
- Della Ceca, L.S.; Ferreyra, M.F.G.; Lyapustin, A.; Chudnovsky, A.; Otero, L.; Carreras, H.; Barnaba, F. Satellite-based view of the aerosol spatial and temporal variability in the Cordoba region (Argentina) using over ten years of high-resolution data. ISPRS J. Photogramm. Remote Sens. 2018, 145, 250–267. [Google Scholar] [CrossRef]
- Qin, K.; Wang, L.; Wu, L.; Xu, J.; Rao, L.; Letu, H.; Shi, T.; Wang, R. A campaign for investigating aerosol optical properties during winter hazes over Shijiazhuang, China. Atmos. Res. 2017, 198, 113–122. [Google Scholar] [CrossRef]
- Wu, L.; Lu, X.; Qin, K.; Bai, Y.; Li, J.; Ren, C.; Zhang, Y. Analysis to Xuzhou aerosol optical characteristics with ground-based measurements by sun photometer. Kexue Tongbao/Chin. Sci. Bull. 2016, 61, 2287–2998. [Google Scholar] [CrossRef]
- Fosu-Amankwah, K.; Bessardon, G.E.Q.; Quansah, E.; Amekudzi, L.K.; Brooks, B.J.; Damoah, R. Assessment of aerosol burden over Ghana. Sci. Afr. 2021, 14, e00971. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, P.; Li, Z.; Yao, W.; Yao, Y. Spatial and Temporal Characteristics of AOD and Meteorological Factors in China During the Period of COVID-19. Geomat. Inf. Sci. Wuhan Univ. 2021, 1–19. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Zeng, Q.; Sun, L.; Yang, J.; Lin, H. Retrieval and Validation of AOD from Himawari-8 Data over Bohai Rim Region, China. Remote Sens. 2020, 12, 3425. [Google Scholar] [CrossRef]
- Aube, M.; O’Neill, N.T.; Royer, A.; Lavoue, D. A modeling approach for aerosol optical depth analysis during forest fire events. Conf. Atmos. Environ. Remote Sens. Data Process. Util. 2004, 5548, 417–426. [Google Scholar] [CrossRef]
- Zhang, T.; Zang, L.; Mao, F.; Wan, Y.; Zhu, Y. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS Aerosol Products over China. Remote Sens. 2020, 12, 1684. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, C.; Gong, W.; Wang, L.; Sun, K.; Shen, H.; Zhu, Z.; Zhu, Z. Improving Spatial Coverage for Aqua MODIS AOD Using NDVI-Based Multi-Temporal Regression Analysis. Remote Sens. 2017, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Anoruo, C.M. Validation of OMI seasonal and spatio-temporal variations in aerosol-cloud interactions over Banizoumbou using AERONET data. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105457. [Google Scholar] [CrossRef]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Shi, Y.; Gong, W.; Chen, S.; Jin, S.; Wang, J. Controlling factors analysis for the Himawari-8 aerosol optical depth accuracy from the standpoint of size distribution, solar zenith angles and scattering angles. Atmos. Environ. 2020, 233, 117501. [Google Scholar] [CrossRef]
- Yang, J.; Hu, M. Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation. Sci. Total Environ. 2018, 633, 677–683. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Lynch, P.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Hogan, T.F.; Hyer, E.J.; Curtis, C.A.; Hegg, D.A.; Shi, Y.; Campbell, J.R.; et al. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 2016, 9, 1489–1522. [Google Scholar] [CrossRef] [Green Version]
- Ningombam, S.S.; Dumka, U.C.; Mugil, S.K.; Kuniyal, J.C.; Hooda, R.K.; Gautam, A.S.; Tiwari, S. Impacts of Aerosol Loading in the Hindu Kush Himalayan Region Based on MERRA-2 Reanalysis Data. Atmosphere 2021, 12, 1290. [Google Scholar] [CrossRef]
- She, L.; Zhang, H.; Wang, W.; Wang, Y.; Shi, Y. Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm for Himawari-8 Data. Remote Sens. 2019, 11, 2771. [Google Scholar] [CrossRef] [Green Version]
- Charabi, Y.; Gastli, A. Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data. Renew. Energy 2012, 44, 23–31. [Google Scholar] [CrossRef]
- de Leeuw, G.; Sogacheva, L.; Rodriguez, E.; Kourtidis, K.; Georgoulias, A.K.; Alexandri, G.; Amiridis, V.; Proestakis, E.; Marinou, E.; Xue, Y.; et al. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: Data set evaluation and large-scale patterns. Atmos. Chem. Phys. 2018, 18, 1573–1592. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Jiang, Q.; Yu, Y.; Xiao, H.; Freese, D. Spatio-Temporal Evolution of a Typical Sandstorm Event in an Arid Area of Northwest China in April 2018 Based on Remote Sensing Data. Remote Sens. 2022, 14, 3065. [Google Scholar] [CrossRef]
- Sun, Z.; Cheng, X.; Xia, X. Spatial-temporal distribution and impact factors of aerosol optical depth over China. Chin. Environ. Sci. 2021, 41, 4466–4475. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, P.; Yao, W.; Yao, Y. Adaptive AOD Forecast Model Based on GNSS-Derived PWV and Meteorological Parameters. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5800610. [Google Scholar] [CrossRef]
- Namdari, S.; Alnasrawi, A.I.Z.; Ghorbanzadeh, O.; Sorooshian, A.; Kamran, K.V.; Ghamisi, P. Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East. Remote Sens. 2022, 14, 2963. [Google Scholar] [CrossRef]
- Zeydan, O.; Tariq, S.; Qayyum, F.; Mehmood, U.; Ul-Haq, Z. Investigating the long-term trends in aerosol optical depth and its association with meteorological parameters and enhanced vegetation index over Turkey. Environ. Sci. Pollut. Res. 2022, 30, 20337–20356. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.R.; Attada, R.; Dasari, H.P.; Vellore, R.K.; Langodan, S.; Abualnaja, Y.O.; Hoteit, I. Aerosol Optical Depth variability over the Arabian Peninsula as inferred from satellite measurements. Atmos. Environ. 2018, 187, 346–357. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liang, H.; Cheng, W. Spatio-temporal variation in AOD and correlation analysis with PAR and NPP in China from 2001 to 2017. Remote Sens. 2020, 12, 976. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Chen, X.; Yang, S.; Tang, L.; Dong, J. Spatiotemporal relationship between Himawari-8 hourly columnar aerosol optical depth (AOD) and ground-level PM2.5 mass concentration in mainland China. Sci. Total Environ. 2021, 765, 144241. [Google Scholar] [CrossRef]
- Sun, H.; Bai, Y.; Lu, M.; Wang, J.; Tuo, Y.; Yan, D.; Zhang, W. Drivers of the water use efficiency changes in China during 1982-2015. Sci. Total Env. 2021, 799, 149145. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, W00A19. [Google Scholar] [CrossRef]
- Yao, J.; Zhai, H.; Yang, X.; Wen, Z.; Wu, S.; Zhu, H.; Tang, X. Spatiotemporal Variations of Aerosols in China during the COVID-19 Pandemic Lockdown. Remote Sens. 2022, 14, 696. [Google Scholar] [CrossRef]
- Mariano, D.A.; dos Santos, C.A.C.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, H.; Cheng, Q.; Huang, L.; Zhang, L. Monitoring three-decade expansion of China’s major cities based on satellite remote sensing images. Remote Sens. 2020, 12, 491. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Huang, S.; Zhao, J.; Li, Z.; Huang, Q.; Deng, M. Spatio-temporal dynamics and driving forces of potential evapotranspiration in the Wei River Basin. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 81–89. [Google Scholar] [CrossRef]
- The State Council Information Office of the People’s Republic of China. Responding to Climate Change: China’s Policies and Actions. Available online: http://ex.chinadaily.com.cn/exchange/partners/82/rss/channel/language/columns/v0m20b/stories/WS6179136aa310cdd39bc71a88.html (accessed on 23 October 2022).
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Gui, H.; An, L.; Hua, C.; Liu, C.; You, Y.; Xu, R.; Chi, Q.; Nan, Y.; et al. Atmospheric Environment Bulletin; China Meteorological Administration: Beijing, China, 2020.
- Ding, J.; Cheng, C.; Zhang, W.; Tian, Y. The ideological origins and geographical demarcation significance of Hu Huanyong Line. Dili Xuebao/Acta Geogr. Sin. 2021, 76, 1317–1333. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Liu, H.; Wu, Q. Prediction of Water Depth From Multispectral Satellite Imagery-The Regression Kriging Alternative. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2511–2515. [Google Scholar] [CrossRef]
- Lee, S.-J.; Serre, M.L.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Jerrett, M. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. Environ. Health Perspect. 2012, 120, 1727–1732. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Jin, R.; Li, X. Regression Kriging-Based Upscaling of Soil Moisture Measurements From a Wireless Sensor Network and Multiresource Remote Sensing Information Over Heterogeneous Cropland. IEEE Geosci. Remote Sens. Lett. 2015, 12, 92–96. [Google Scholar] [CrossRef]
- Mohammad, L.; Mondal, I.; Bandyopadhyay, J.; Pham, Q.B.; Nguyen, X.C.; Dinh, C.D.; Al-Quraishi, A.M.F. Assessment of spatio-temporal trends of satellite-based aerosol optical depth using Mann–Kendall test and Sen’s slope estimator model. Geomat. Nat. Hazards Risk 2022, 13, 1270–1298. [Google Scholar] [CrossRef]
- Ning, Z.; Zhang, J.; Wang, G. Variation and global pattern of major meteorological elements during 1948~2016. China Environ. Sci. 2021, 41, 4085–4095. [Google Scholar] [CrossRef]
- Li, G.; Chen, W.; Zhang, X.; Yang, Z.; Wang, Z.; Bi, P. Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018. Environ. Sci. Pollut. Res. Int. 2022, 29, 75322–75337. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yue, X.; Sun, Q.; Wang, S. Case study of dust event sources from the Gobi and Taklamakan deserts: An investigation of the horizontal evolution and topographical effect using numerical modeling and remote sensing. J. Environ. Sci. 2017, 56, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, Q.; Ge, X.; Abbas, A.; Jin, L. Spatio-temporal changes of AOD in Xinjiang of China from 2000 to 2019: Which factor is more influential, natural factor or human factor? PLoS ONE 2021, 16, e0253942. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zheng, X.; Zhao, T.; Chen, J. A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int. J. Climatol. 2014, 34, 863–870. [Google Scholar] [CrossRef]
- Deng, X.; Wu, L.; He, C.; Shao, H. Study on Spatiotemporal Variation Pattern of Vegetation Coverage on Qinghai-Tibet Plateau and the Analysis of Its Climate Driving Factors. Int. J. Environ. Res. Public Health 2022, 19, 8836. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, G.; Xie, D.; Hu, R.; Zhang, H. Generating Long Time Series of High Spatiotemporal Resolution FPAR Images in the Remote Sensing Trend Surface Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Tan, S.; Chen, B.; Wang, H.; Che, H.; Yu, H.; Shi, G. Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021. Atmosphere 2022, 13, 992. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Xie, D.H.; Liu, S.; Hu, R.H.; Li, Y.H.; Yan, G.J. Scaling of FAPAR from the Field to the Satellite. Remote Sens 2016, 8, 310. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, D.; Zhan, Y.; Li, H.; Yan, G.; Chen, Y. Assessing the Accuracy of Landsat-MODIS NDVI Fusion with Limited Input Data: A Strategy for Base Data Selection. Remote Sens. 2021, 13, 266. [Google Scholar] [CrossRef]
Region | Administrative District |
---|---|
Beijing-Tianjin-Hebei (BTH) | Beijing city, Tianjin city, Hebei Province |
Fenway Plain (FWP) | Shanxi Province, Shaanxi Province and Henan Provinces |
Yangtze River Delta (YRD) | Shanghai city, Jiangsu Province, Zhejiang Province, Anhui Province |
Guangdong province (GD) | Guangdong Province |
Northeast (NE) | Heilongjiang Province, Jilin Province, Liaoning Province |
Central China (CC) | Hunan Province, Hubei Province, Jiangxi Province |
Southwest (SW) | Yunnan Province, Sichuan Province, Guizhou Province, Chongqing city |
Northwest (NW) | Shaanxi Province, Gansu Province, Ningxia Province, Xinjiang Province |
NE | FWP | CC | BTH | NW | SW | YRD | GD | |
---|---|---|---|---|---|---|---|---|
Spring | −1.713 | −3.425 | −2.958 | −2.335 | −0.467 | −2.491 | −3.270 | −1.090 * |
Summer | −2.491 | −3.425 | −2.803 | −3.270 | −0.467 | −3.114 | −2.335 | −2.335 * |
Autumn | −2.335 | −1.713 | −2.647 | −2.491 | 1.246 * | −2.647 | −2.335 | −2.491 |
Winter | −2.024 | −2.180 | −1.401 | −1.713 | −2.024 | −1.401 | −2.024 | −2.803 |
Annual | −2.491 | −3.425 | −2.647 | −3.581 | −0.934 | −3.114 | −3.270 | −2.803 |
GDPPC | IOPSK | |||||
---|---|---|---|---|---|---|
GCT | SR | CR/% | GCT | SR | CR/% | |
NE | / | −0.083 | −2.0 | / | −0.202 | −3.573 |
NW | / | 0.012 | 0.979 | / | −0.030 | −3.394 |
SW | / | −0.269 | −26.398 | √ | −0.223 | −20.999 |
YRD | / | −0.431 | −36.907 | / | −0.439 | −22.623 |
FWP | / | −0.591 | −24.408 | / | −0.325 | −28.175 |
CC | / | −0.358 | −34.187 | / | −0.329 | −22.270 |
BTH | √ | −0.378 | −26.156 | / | −0.503 | −33.358 |
GD | / | −0.436 | −31.280 | / | −0.316 | −28.924 |
CGT | SR | CR/% | |||||||
---|---|---|---|---|---|---|---|---|---|
TEM | RHU | WIN | TEM | RHU | WIN | TEM | RHU | WIN | |
NE | / | / | / | 0.096 | 0.259 | 0.361 | 7.04 | −1.7932 | 6.273 |
NW | / | / | √ | 0.177 | −1.372 | 1.376 | 6.214 | −4.723 | 7.421 |
SW | / | / | √ | −0.324 | −2.681 | 1.209 | −5.434 | −12.221 | 15.593 |
YRD | / | √ | / | −0.09 | −0.692 | 0.795 | −2.580 | −4.759 | −5.659 |
FWP | / | √ | / | 0.092 | 0.228 | −0.307 | 1.439 | 0.364 | −3.832 |
CC | √ | √ | √ | −0.371 | −1.677 | −1.297 | −8.378 | −10.936 | −13.079 |
BTH | / | / | √ | 0.285 | 1.078 | −0.492 | 4.662 | −3.802 | 0.949 |
GD | √ | √ | / | −0.481 | 0.532 | −0.618 | −5.484 | 3.126 | −2.474 |
GCT | SR | CR/% | |
---|---|---|---|
NE | √ | −0.946 | −10.88 |
NW | / | 0.134 | 2.31 |
SW | √ | −1.523 | −20.93 |
YRD | / | 1.080 | −4.76 |
FWP | / | 0.226 | 1.63 |
CC | √ | −1.047 | −11.1 |
BTH | √ | 0.171 | −0.74 |
GD | √ | −0.999 | −24.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, L.; Xie, D.; Hu, Y.; Cao, D.; Huang, H.; Zhao, D. Investigation of Spatiotemporal Variation and Drivers of Aerosol Optical Depth in China from 2010 to 2020. Atmosphere 2023, 14, 477. https://doi.org/10.3390/atmos14030477
Wang Y, Yang L, Xie D, Hu Y, Cao D, Huang H, Zhao D. Investigation of Spatiotemporal Variation and Drivers of Aerosol Optical Depth in China from 2010 to 2020. Atmosphere. 2023; 14(3):477. https://doi.org/10.3390/atmos14030477
Chicago/Turabian StyleWang, Yiting, Lixiang Yang, Donghui Xie, Yuhao Hu, Di Cao, Haiyang Huang, and Dan Zhao. 2023. "Investigation of Spatiotemporal Variation and Drivers of Aerosol Optical Depth in China from 2010 to 2020" Atmosphere 14, no. 3: 477. https://doi.org/10.3390/atmos14030477
APA StyleWang, Y., Yang, L., Xie, D., Hu, Y., Cao, D., Huang, H., & Zhao, D. (2023). Investigation of Spatiotemporal Variation and Drivers of Aerosol Optical Depth in China from 2010 to 2020. Atmosphere, 14(3), 477. https://doi.org/10.3390/atmos14030477