Future Ozone Levels Responses to Changes in Meteorological Conditions under RCP 4.5 and RCP 8.5 Scenarios over São Paulo, Brazil
Abstract
:1. Introduction
- (i)
- Increased temperatures, extreme rainfall events, and atmospheric stability.
- (ii)
- Decrease in days with light rainfall and nighttime relative humidity.
2. Methodology
2.1. Case Study and Data Collection
2.2. Preparation of the Emission Files
2.3. Model Performance Evaluation for the Base Case Scenario
3. Results and Discussions
3.1. Monthly Ozone Analysis
3.2. Base Case Scenario
3.2.1. Meteorological Model Performance Evaluation
3.2.2. Air Quality Model Performance Evaluation
3.2.3. Surface Ozone Evaluation by Station Type
3.3. Future Scenarios
3.3.1. Changes in Meteorological Conditions
3.3.2. Changes in Surface Ozone
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10, Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Italy, 2021. [Google Scholar]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, J.; Waldhoff, S.T.; Van de Ven, D.J.; Pardo, G.; Van Dingenen, R.; Arto, I.; del Prado, A.; Sanz, M.J. Future impacts of ozone driven damages on agricultural systems. Atmos. Environ. 2020, 231, 117538. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Fiore, A.M.; Naik, V.; Leibensperger, E.M. Air Quality and Climate Connections. J. Air Waste Manag. Assoc. 2015, 65, 645–685. [Google Scholar] [CrossRef]
- Fu, T.M.; Tian, H. Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps. Curr. Pollut. Rep. 2019, 5, 159–171. [Google Scholar] [CrossRef] [Green Version]
- IBGE. População das Regiões Metropolitanas no 2019. 2019. Available online: https://agenciadenoticias.ibge.gov.br/agencia-detalhe-de-midia.html?view=mediaibge&catid=2103&id=3109 (accessed on 20 October 2021).
- CETESB. Emissões Veiculares no Estado de São Paulo 2018; Série Relatórios: São Paulo, Brazil, 2019; p. 193. [Google Scholar]
- Andrade, M.d.F.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; de Miranda, R.M.; Albuquerque, T.; et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.D.M.; Pérez-Martínez, P.J.; de Fatima Andrade, M.; Kumar, P.; de Miranda, R.M. Characterization of particles emitted by pizzerias burning wood and briquettes: A case study at Sao Paulo, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 35875–35888. [Google Scholar] [CrossRef]
- CETESB. Qualidade do ar no Estado de São Paulo 2018, 21st ed.; Série Relatórios: São Paulo, Brazil, 2019; p. 214. [Google Scholar]
- Chiquetto, J.B.; Silva, M.E.S.; Cabral-Miranda, W.; Ribeiro, F.N.D.; Ibarra-Espinosa, S.A.; Ynoue, R.Y. Air Quality Standards and Extreme Ozone Events in the São Paulo Megacity. Sustainability 2019, 11, 3725. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D.; Martins, J.A.; Mazzoli, C.R.; Andrade, M.d.F. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environ. Sci. Policy 2015, 47, 68–79. [Google Scholar] [CrossRef]
- Von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef]
- De Lima, G.N.; Magaña Rueda, V.O. The urban growth of the metropolitan area of Sao Paulo and its impact on the climate. Weather Clim. Extrem. 2018, 21, 17–26. [Google Scholar] [CrossRef]
- Marengo, J.; Valverde, M.; Obregon, G. Observed and projected changes in rainfall extremes in the Metropolitan Area of São Paulo. Clim. Res. 2013, 57, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Ambrizzi, T.; Alves, L.M.; Barreto, N.J.C.; Reboita, M.S.; Ramos, A.M. Changing Trends in Rainfall Extremes in the Metropolitan Area of São Paulo: Causes and Impacts. Front. Clim. 2020, 2, 8–20. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Soares, W.R. (Eds.) Climate Change Risks in Brazil; Springer International Publishing: Cham, Switzerland, 2019; p. 219. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.D.F.; Ynoue, R.Y.; Freitas, E.D.; Todesco, E.; Vara Vela, A.; Ibarra, S.; Martins, L.D.; Martins, J.A.; Carvalho, V.S.B. Air quality forecasting system for Southeastern Brazil. Front. Environ. Sci. 2015, 3, 6975. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ccoyllo, O.R.; Ynoue, R.Y.; Martins, L.D.; Andrade, M.d.F. Impacts of ozone precursor limitation and meteorological variables on ozone concentration in São Paulo, Brazil. Atmos. Environ. 2006, 40, 552–562. [Google Scholar] [CrossRef]
- Hoshyaripour, G.; Brasseur, G.; Andrade, M.; Gavidia-Calderón, M.; Bouarar, I.; Ynoue, R. Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models. Atmos. Environ. 2016, 145, 365–375. [Google Scholar] [CrossRef]
- Vara-Vela, A.; Andrade, M.F.; Kumar, P.; Ynoue, R.Y.; Muñoz, A.G. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: A numerical study with the WRF-Chem model. Atmos. Chem. Phys. 2016, 16, 777–797. [Google Scholar] [CrossRef] [Green Version]
- Vara-Vela, A.; de Fátima Andrade, M.; Zhang, Y.; Kumar, P.; Ynoue, R.Y.; Souto-Oliveira, C.E.; da Silva Lopes, F.J.; Landulfo, E. Modeling of Atmospheric Aerosol Properties in the São Paulo Metropolitan Area: Impact of Biomass Burning. J. Geophys. Res. Atmos. 2018, 123, 9935–9956. [Google Scholar] [CrossRef]
- Mazzoli da Rocha, C.R. Estudo Numérico da influência das Mudançãs Climáticas e das Emissões Urbanas no Ozônio Troposférico da Região Metropolitana de São Paulo. In Tese de Doutorado; Universidade de São Paulo: São Paulo, Brazil, 2013. [Google Scholar]
- Schuch, D.; Andrade, M.d.F.; Zhang, Y.; Dias de Freitas, E.; Bell, M.L. Short-Term Responses of Air Quality to Changes in Emissions under the Representative Concentration Pathway 4.5 Scenario over Brazil. Atmosphere 2020, 11, 799. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Summary for Policymakers: Cambridge, UK; New York, NY, USA, 2021; p. 39. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled ’online’ chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.1 (No. NCAR/TN-556+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Gavidia-Calderón, M.; Vara-Vela, A.; Crespo, N.; Andrade, M. Impact of time-dependent chemical boundary conditions on tropospheric ozone simulation with WRF-Chem: An experiment over the Metropolitan Area of São Paulo. Atmos. Environ. 2018, 195, 112–124. [Google Scholar] [CrossRef]
- Monaghan, A.J.; Steinhoff, D.F.; Bruyere, C.L.; Yates, D. NCAR CESM Global Bias-Corrected CMIP5 Output to Support WRF/MPAS Research. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2014. Available online: https://rda.ucar.edu/datasets/ds316.1/ (accessed on 12 February 2020).
- NCEP; NWS; NOAA; US. Department of Commerce. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999, 2000, Updated Daily. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 8 February 2020).
- Ritter, M. An Air Pollution Modeling System for Switzerland Using WRF-Chem: Development, Simulation, Evaluation. Ph.D. Thesis, Faculty of Science, Universität Basel, Basel, Switzerland, 2013. [Google Scholar]
- WMO. Guide to Instruments and Methods of Observation: Volume I—Measurement of Meteorological Variables; World Meteorological Organization: Geneva, Italy, 2018. [Google Scholar]
- Delgado Peralta, A.H. Simulation of Tropospheric Ozone Formation in the Metropolitan Area of São Paulo under Climate Change Scenarios. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2021. [Google Scholar]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a Mesobeta–Scale Model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1-38-4. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison with Multi-Layer And Slab Models. Bound.-Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. Atmos. 2006, 111, D21305. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; et al. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. [Google Scholar] [CrossRef] [Green Version]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OpenStreetMap Contributors. OpenStreetMap Data Extracts. Available online: https://download.geofabrik.de/ (accessed on 20 October 2020).
- Pérez-Martínez, P.J.; Miranda, R.M.; Nogueira, T.; Guardani, M.L.; Fornaro, A.; Ynoue, R.; Andrade, M.F. Emission factors of air pollutants from vehicles measured inside road tunnels in São Paulo: Case study comparison. Int. J. Environ. Sci. Technol. 2014, 11, 2155–2168. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.F.; Oliveira, G.; Miranda, R.M.; Nogueira, T. Evolution of Vehicular Emission Factors, From 2001 to 2018, in São Paulo, Brazil, Evaluated by Tunnel Measurements, AGU Fall Meeting: San Francisco. 2019. Available online: https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/581795 (accessed on 7 February 2023).
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Monk, K.; Guérette, E.A.; Paton-Walsh, C.; Silver, J.D.; Emmerson, K.M.; Utembe, S.R.; Zhang, Y.; Griffiths, A.D.; Chang, L.T.C.; Duc, H.N.; et al. Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1—Meteorological Model Comparison. Atmosphere 2019, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Jurán, S.; Sigut, L.; Holub, P.; Fares, S.; Klem, K.; Grace, J.; Urban, O. Ozone flux and ozone deposition in a mountain spruce forest are modulated by sky conditions. Sci. Total Environ. 2019, 672, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Kašpar, V.; Zapletal, M.; Samec, P.; Komárek, J.; Bílek, J.; Juráň, S. Unmanned aerial systems for modelling air pollution removal by urban greenery. Urban For. Urban Green. 2022, 78, 127757. [Google Scholar] [CrossRef]
- Ibarra-Espinosa, S.; Ynoue, R.Y.; Ropkins, K.; Zhang, X.; de Freitas, E.D. High spatial and temporal resolution vehicular emissions in south-east Brazil with traffic data from real-time GPS and travel demand models. Atmos. Environ. 2020, 222, 117136. [Google Scholar] [CrossRef]
Description | Configuration |
---|---|
Model version | 4.1.3 |
Simulation period | September and October 2018 and 2030 |
Domain | |
West-east points | 90, 151 |
South-north points | 60, 121 |
Vertical levels | 32, 27 |
Geographical dataset | 30 s, 30 s |
Grid spacing | 15 km, 3 km |
Map projection | Mercator |
Center latitude | −23.57 |
Center longitude | −46.61 |
Physical parameterization | |
Long-wave radiation | RRTM [38] |
Short-wave radiation | RRTMG [39] |
Boundary layer | BouLac [40] |
Surface layer | Revised MM5 scheme [41] |
Land-surface | Noah [42] |
Cumulus cloud | Grell 3D [43,44] |
Cloud microphysics | Morrison double-moment [45] |
Urban surface | Urban canopy model [46] |
Chemical options | |
Chemical lateral | Idealized profile |
Gas-phase mechanism | CBMZ without DMS |
Photolysis scheme | Fast-J [47] |
Emissions | Two 12 h files |
CBMZ/MOSAIC [48] | |
RADM2 speciation [49] | |
MEGAN2 [50] |
NMB | NME | r | |||
---|---|---|---|---|---|
Month | Location | Classification | (%) | (%) | |
September 2018 | Domain 02 | All types | 2.2 | 21.7 | 0.67 |
Outside | Industry | −7.3 | 17.5 | 0.80 | |
Regional urban | −0.3 | 19.2 | 0.69 | ||
MASP | Forest preservation | 7.2 | 30.6 | 0.72 | |
Urban | 7.4 | 24.8 | 0.68 | ||
Urban park | −0.6 | 22.7 | 0.69 | ||
October 2018 | Domain 02 | All types | 2.0 | 20.8 | 0.64 |
Outside | Industry | −8.5 | 20.6 | 0.69 | |
Regional urban | −1.9 | 18.6 | 0.59 | ||
MASP | Forest preservation | −4.5 | 24.4 | 0.60 | |
Urban | 9.0 | 23.3 | 0.66 | ||
Urban park | 4.8 | 23.0 | 0.67 |
2018 | 2030 | 2030 | |||
---|---|---|---|---|---|
Month | Location | Classification | Base Case (g m−3) | RCP 4.5 (g m−3) | RCP 8.5 (g m−3) |
September | Outside | Industry | 100.5 ± 23.41 | 94.4 ± 15.7 (−6.1 ± 28.19) | 98.6 ± 21.54 (−1.9 ± 31.81) |
Regional urban | 97.0 ± 20.75 | 90.7 ± 18.66 (−6.4 ± 27.91) | 99.9 ± 19.40 (−2.9 ± 28.41) | ||
MASP | Forest preservation | 92.7 ± 25.57 | 84.8 ± 32.05 (−7.9 ± 41.00) | 106.1 ± 29.23 (−13.5 ± 38.84) | |
Urban | 90.5 ± 24.21 | 81.8 ± 30.29 (−8.7 ± 38.78) | 105.5 ± 28.81 (−15.0 ± 37.63) | ||
Urban park | 90.2 ± 23.01 | 82.0 ± 30.20 (−8.3 ± 37.97) | 105.4 ± 29.01 (−15.1 ± 37.03) | ||
October | Outside | Industry | 95.0 ± 15.60 | 104.8 ± 24.17 (−9.8 ± 28.77) | 98.6 ± 22.70 (−3.6 ± 27.54) |
Regional urban | 91.4 ± 16.34 | 98.2 ± 24.16 (−6.7 ± 29.25) | 91.0 ± 23.63 (−0.4 ± 28.73) | ||
MASP | Forest preservation | 79.7 ±25.87 | 89.7 ± 33.26 (−10.0 ± 42.14) | 84.2 ± 30.23 (−4.5 ± 39.79) | |
Urban | 80.0 ± 27.80 | 87.7 ± 34.27 (−7.7 ± 44.13) | 80.3 ± 28.06 (+0.2 ± 39.50) | ||
Urban park | 80.4 ± 28.35 | 87.4 ± 34.95 (−7.0 ± 45.00) | 81.0 ± 28.86 (+0.6 ± 40.46) |
Study | Optimistic Scenario | Pessimist Scenario | Period |
---|---|---|---|
This work | −7.90% (RCP 4.5) | +9.47% (RCP 8.5) | 1–30 September 2018 and 2030 |
+9.66% (RCP 4.5) | +1.99% (RCP 8.5) | 1–31 October 2018 and 2030 | |
Schuch et al. [28] | −10% to 0% (RCP 4.5) | - | 31 July to 10 August 2020 and 2030 |
Mazzoli da Rocha [27] | −6% (SRES B1) | +14% (SRES A2) | 8–16 November 2020 and 2050 (cases 2, 3, and 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peralta, A.H.D.; Gavidia-Calderón, M.; Andrade, M.d.F. Future Ozone Levels Responses to Changes in Meteorological Conditions under RCP 4.5 and RCP 8.5 Scenarios over São Paulo, Brazil. Atmosphere 2023, 14, 626. https://doi.org/10.3390/atmos14040626
Peralta AHD, Gavidia-Calderón M, Andrade MdF. Future Ozone Levels Responses to Changes in Meteorological Conditions under RCP 4.5 and RCP 8.5 Scenarios over São Paulo, Brazil. Atmosphere. 2023; 14(4):626. https://doi.org/10.3390/atmos14040626
Chicago/Turabian StylePeralta, Alejandro H. Delgado, Mario Gavidia-Calderón, and Maria de Fatima Andrade. 2023. "Future Ozone Levels Responses to Changes in Meteorological Conditions under RCP 4.5 and RCP 8.5 Scenarios over São Paulo, Brazil" Atmosphere 14, no. 4: 626. https://doi.org/10.3390/atmos14040626
APA StylePeralta, A. H. D., Gavidia-Calderón, M., & Andrade, M. d. F. (2023). Future Ozone Levels Responses to Changes in Meteorological Conditions under RCP 4.5 and RCP 8.5 Scenarios over São Paulo, Brazil. Atmosphere, 14(4), 626. https://doi.org/10.3390/atmos14040626