Simultaneous Quantification of Real-World Elemental Contributions from the Exhaust and Non-Exhaust Vehicular Emissions Using Road Dust Enrichment Factor-Elemental Carbon Tracer Method (EFECT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
Meteorology
2.2. Sampling
2.2.1. TSP Sampling
2.2.2. Road Dust Sampling
2.3. Analytical Methods
2.4. EFECT Method
3. Results
Application Results of EFECT
4. Discussion
4.1. Comparison of EFECT’s Source Apportionment Results with PMF and FA-MLR
4.2. Road Dust Source Profile Comparisons
4.3. Exhaust Emission Source Profile Comparisons
4.4. Diagnostic Ratios for rdrs, exh, and n-exh Sources
4.5. Source Profiles Generated from the EFECT
4.6. Receptor Site Application Results of the EFECT
4.7. Using Source Apportionment Results of the EFECT as Inputs to PMF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic nonexhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Denier van der Gon, H.A.C.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future-An International Workshop Report and Consensus Statement. J. Air Waste Manag. Assoc. 2013, 63, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, A.; Harrison, R.M. Sources and properties of nonexhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Rexeis, M.; Hausberger, S. Trend of vehicle emission levels until 2020—Prognosis based on current vehicle measurements and future emission legislation. Atmos. Environ. 2009, 43, 4689–4698. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Timmers, V.R.J.H.; Achten, P.A.J. Nonexhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Charron, A.; Polo-Rehn, L.; Besombes, J.L.; Golly, B.; Buisson, C.; Chanut, H.; Marchand, N.; Guillaud, G.; Jaffrezo, J.L. Identification and quantification of particulate tracers of exhaust and nonexhaust vehicle emissions. Atmos. Chem. Phys. 2019, 19, 5187–5207. [Google Scholar] [CrossRef] [Green Version]
- Bayramoğlu Karşı, M.B.; Berberler, E.; Berberler, T.; Aslan, Ö.; Yenisoy-Karakaş, S.; Karakaş, D. Correction and source apportionment of vehicle emission factors obtained from Bolu Mountain Highway Tunnel, Turkey. Atmos. Pollut. Res. 2020, 11, 2133–2141. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Figi, R.; Richard, A.; Furger, M.; Rickers, K.; Falkenberg, G.; Zhao, Y.; Cliff, S.S.; et al. Real-world emission factors for antimony and other brake wear related trace elements: Size-segregated values for light and heavy duty vehicles. Environ. Sci. Technol. 2009, 43, 8072–8078. [Google Scholar] [CrossRef]
- Demir, T.; Yenisoy-Karakaş, S.; Karakaş, D. PAHs, elemental and organic carbons in a highway tunnel atmosphere and road dust: Discrimination of diesel and gasoline emissions. Build. Environ. 2019, 160, 106166. [Google Scholar] [CrossRef]
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road vehicle emission factors development: A review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- Gaga, E.O.; Arı, A.; Akyol, N.; Üzmez, Ö.Ö.; Kara, M.; Chow, J.C.; Watson, J.G.; Özel, E.; Döğeroğlu, T.; Odabasi, M. Determination of real-world emission factors of trace metals, EC, OC, BTEX, and semivolatile organic compounds (PAHs, PCBs and PCNs) in a rural tunnel in Bilecik, Turkey. Sci. Total Environ. 2018, 643, 1285–1296. [Google Scholar] [CrossRef]
- Hao, Y.; Deng, S.; Yang, Y.; Song, W.; Tong, H.; Qiu, Z. Chemical composition of particulate matter from traffic emissions in a road tunnel in Xi’an, China. Aerosol Air Qual. Res. 2019, 19, 234–246. [Google Scholar] [CrossRef]
- Jamriska, M.; Morawska, L.; Thomas, S.; He, C. Diesel bus emissions measured in a tunnel study. Environ. Sci. Technol. 2004, 38, 6701–6709. [Google Scholar] [CrossRef] [Green Version]
- Kristensson, A.; Johansson, C.; Westerholm, R.; Swietlicki, E.; Gidhagen, L.; Wideqvist, U.; Vesely, V. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmos. Environ. 2004, 38, 657–673. [Google Scholar] [CrossRef]
- Nogueira, T.; de Souza, K.F.; Fornaro, A.; de Fatima Andrade, M.; de Carvalho, L.R.F. On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic tunnels in the Metropolitan Area of Sao Paulo, Brazil. Atmos. Environ. 2015, 108, 88–97. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P.K. Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Demir, T.; Karakaş, D.; Yenisoy-Karakaş, S. Source identification of exhaust and nonexhaust traffic emissions through the elemental carbon fractions and Positive Matrix Factorization method. Environ. Res. 2022, 204, 112399. [Google Scholar] [CrossRef] [PubMed]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; De Minter, J.T.; Park, J.S. Characterization of metals emitted from motor vehicles. Res. Rep. 2006, 133, 1–76. [Google Scholar]
- Sjögren, M.; Li, H.; Rannug, U.; Westerholm, R. Multivariate analysis of exhaust emissions from heavy-duty diesel fuels. Environ. Sci. Technol. 1996, 30, 38–49. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Yamada, Y.; Yeh, H.C.; Swift, D.L. Diffusional deposition of ultrafine aerosols in a human nasal cast. J. Aerosol Sci. 1988, 19, 741–751. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Pulles, T.; Heslinga, D. The Art of Emission Inventorying; TNO: Hague, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Smits, M.; Vanpachtenbeke, F.; Horemans, B.; de Wael, K.; Hauchecorne, B.; van Langenhove, H.; Demeestere, K.; Lenaerts, S. Effect of operating and sampling conditions on the exhaust gas composition of small-scale power generators. PLoS ONE 2012, 7, e32825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.F.; Huang, K.L.; Li, C.T.; Mi, H.H.; Luo, J.H.; Tsai, P.J. Emissions of fuel metals content from a diesel vehicle engine. Atmos. Environ. 2003, 37, 4637–4643. [Google Scholar] [CrossRef]
- Weber, S.; Hoffmann, P.; Ensling, J.; Dedic, A.N.; Weinbruch, S.; Miehe, G.; Gutlich, P.; Ortner, H.M. Characterization of iron compounds from urban and rural aerosol sources. J. Aerosol. Sci. 2000, 31, 987–997. [Google Scholar] [CrossRef]
- Cheung, K.L.; Ntziachristos, L.; Tzamkiozis, T.; Schauer, J.J.; Samaras, Z.; Moore, K.F.; Sioutas, C. Emissions of Particulate Trace Elements, Metals and Organic Species from Gasoline, Diesel, and Biodiesel Passenger Vehicles and Their Relation to Oxidative Potential. Aerosol. Sci. Technol. 2010, 44, 500–513. [Google Scholar] [CrossRef]
- McKenzie, C.H.L.; Godwin, A.A.; Morawska, L.; Zoran, D.; Ristovski, E.; Rohan, J.; Kokot, S. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol. Atmos. Environ. 2006, 40, 3111–3122. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot AS, H.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Wang, C.; Chang, C.; Tsai, S.; Chiang, H. Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan. J. Air Waste Manag. Assoc. 2005, 55, 1236–1244. [Google Scholar] [CrossRef]
- Corbin, J.; Mensah, A.A.; Pieber, S.M.; Orasche, J.; Michalke, B.; Zanatta, M.; Czech, H.; Massabò, D.; Buatier de Mongeot, F.; Mennucci, C.; et al. Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine. Environ. Sci. Technol. 2018, 52, 6714–6722. [Google Scholar] [CrossRef] [Green Version]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Handler, M.; Puls, C.; Zbiral, J.; Marr, I.; Puxbaum, H.; Limbeck, A. Size and composition of particulate emissions from motor vehicles in the Kaisermühlen-Tunnel, Vienna. Atmos. Environ. 2008, 42, 2173–2186. [Google Scholar] [CrossRef]
- Lawrence, S.; Sokhi, R.; Ravindra, K.; Mao, H.; Prain, H.D.; Bull, I.D. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 2013, 77, 548–557. [Google Scholar] [CrossRef]
- Pio, C.; Mirante, F.; Oliveira, C.; Matos, M.; Caseiro, A.; Oliveira, C.; Querol, X.; Alves, C.; Martins, N.; Cerqueira, M.; et al. Size-segregated chemical composition of aerosol emissions in an urban road tunnel in Portugal. Atmos. Environ. 2013, 71, 15–25. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Pant, P.; Shi, Z.; Pope, F.D.; Harrison, R.M. Characterization of traffic-related particulate matter emissions in a road tunnel in Birmingham, UK: Trace metals and organic molecular markers. Aerosol. Air Qual. Res. 2017, 17, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne brake wear debris: Size distributions, composition, and a comparison of dynamometer and vehicle tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- Marr, I.L.; Kluge, P.; Main, L.; Margerin, V.; Lescop, C. Digests or extracts? Some interesting but conflicting results for three widely differing polluted sediment samples. Mikrochim. Acta 1995, 119, 219–232. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Leland, A. Literature Review on the Effects of Organometallic Fuel Additives in Gasoline and Diesel Fuels. SAE Int. J. Fuels Lubr. 2018, 11, 105–124. [Google Scholar] [CrossRef]
- Bayramoğlu Karşı, M.B.; Berberler, E.; Karakaş, D. Polycyclic aromatic hydrocarbon and ionic compositions of atmospheric bulk deposition samples at a national park under the influence of intense barbecue smoke. Int. J. Environ. Anal. Chem. 2019, 99, 428–443. [Google Scholar] [CrossRef]
- Yang, H.H.; Dhital, N.B.; Wang, L.C.; Hsieh, Y.S.; Lee, K.T.; Hsu, Y.T.; Huang, S.C. Chemical characterization of fine particulate matter in gasoline and diesel vehicle exhaust. Aerosol. Air Qual. Res. 2019, 19, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Galvão, E.S.; D’Azeredo Orlando, M.T.; Santos, J.M.; Lima, A.T. Uncommon chemical species in PM2.5 and PM10 and its potential use as industrial and vehicular markers for source apportionment studies. Chemosphere 2020, 240, 124953. [Google Scholar] [CrossRef] [PubMed]
- Fabretti, J.F.; Sauret, N.; Gal, J.F.; Maria, P.C.; Scharer, U. Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France. Atmos. Res. 2009, 94, 320–329. [Google Scholar] [CrossRef]
- Lin, Y.C.; Tsai, C.J.; Wu, Y.C.; Zhang, R.; Chi, K.H.; Huang, Y.T.; Lin, S.H.; Hsu, S.C. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: Size distribution, potential source, and fingerprinting metal ratio. Atmos. Chem. Phys. 2015, 15, 4117–4130. [Google Scholar] [CrossRef] [Green Version]
- Kurre, S.K.; Pandey, S.; Garg, R.; Saxena, M. Condition monitoring of a diesel engine fueled with a blend of diesel, biodiesel, and butanol using engine oil analysis. Biofuels 2015, 6, 223–231. [Google Scholar] [CrossRef]
- USEPA. Emission Factor Documentation for AP-42, Section 13.2.1 Paved Roads. 2011. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/emission_factor_documentation_for_ap-2_section_13.2.1_paved_roads_.pdf (accessed on 26 September 2022).
- Han, S.; Jung, Y.W. A study of the characteristic of silt loading on the paved roads in the Seoul metropolitan area using a mobile monitoring system. J. Air. Waste Manag. Assoc. 2012, 62, 846–862. [Google Scholar] [CrossRef]
- Çevik, F.; Göksu, M.Z.L.; Derici, O.B.; Findik, Ö. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ. Monit. Assess. 2009, 152, 309–317. [Google Scholar] [CrossRef]
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Kryłów, M.; Generowicz, A. Impact of street sweeping and washing on the pm10 and PM2.5 concentrations in cracow (Poland). Rocz. Ochr. Sr. 2019, 21, 691–711. [Google Scholar]
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol. Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Karanasiou, A.; Diapouli, E.; Cavalli, F.; Eleftheriadis, K.; Viana, M.; Alastuey, A.; Querol, X.; Reche, C. On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmos. Meas. Tech. 2011, 4, 2409–2419. [Google Scholar] [CrossRef] [Green Version]
Element | N | Xtsp | Xrdrs | Xexh | Xn-exh |
---|---|---|---|---|---|
Al | 14 | 3.55 ± 0.75 (3.38) | 2.11 ± 0.65 (2.53) | 0.782 ± 1.03 (0.301) | 0.655 ± 0.27 (0.612) |
As | 18 | 0.011 ± 0.0073 (0.0103) | 0.00113 ± 0.00049 (0.00115) | 0.0094 ± 0.0071 (0.0083) | 0.00063 ± 0.00032 (0.00063) |
Ba | 19 | 0.125 ± 0.0351 (0.117) | 0.023 ± 0.010 (0.0231) | 0.087 ± 0.041 (0.0753) | 0.0140 ± 0.0056 (0.0130) |
Be | 16 | 0.00025 ± 5.9 × 10−5 (0.00025) | 1.2 × 10−5 ± 5.4 × 10−6 (1.2 × 10−5) | 0.00023 ± 6.0 × 10−5 (0.00022) | 2.9 × 10−6 ± 2.9 × 10−6 (2.0 × 10−6) |
Ca | 17 | 2.84 ± 0.63 (2.72) | 1.80 ± 0.76 (1.92) | 0.522 ± 0.61 (0.40) | 0.509 ± 0.23 (0.537) |
Cd | 19 | 0.00054 ± 0.00026 (0.00043) | 8.0 × 10−5 ± 3.4 × 10−5 (8.0 × 10−5) | 0.00041 ± 0.00026 (0.00033) | 5.1 × 10−5 ± 2.0 × 10−5 (5.2 × 10−5) |
Cr | 19 | 0.17 ± 0.034 (0.161) | 0.0133 ± 0.0058 (0.0135) | 0.149 ± 0.038 (0.142) | 0.0070 ± 0.0041 (0.0054) |
Cu | 17 | 0.041 ± 0.0146 (0.0389) | 0.0145 ± 0.0068 (0.0147) | 0.0190 ± 0.0170 (0.0152) | 0.0072 ± 0.0033 (0.0072) |
Fe | 15 | 4.67 ± 3.45 (3.37) | 2.10 ± 0.80 (2.38) | 1.83 ± 3.82 (0.060) | 0.739 ± 0.338 (0.701) |
Mg | 13 | 1.07 ± 0.212 (1.05) | 0.709 ± 0.226 (0.870) | 0.184 ± 0.286 (0.0518) | 0.180 ± 0.083 (0.150) |
Mn | 15 | 0.045 ± 0.0092 (0.043) | 0.028 ± 0.010 (0.0317) | 0.0090 ± 0.013 (0.0045) | 0.0077 ± 0.0034 (0.0082) |
Ni | 14 | 0.044 ± 0.039 (0.0322) | 0.0067 ± 0.0031 (0.0066) | 0.0331 ± 0.040 (0.0210) | 0.0038 ± 0.00166 (0.00406) |
Pb | 19 | 0.0196 ± 0.0052 (0.0174) | 0.0033 ± 0.0014 (0.0034) | 0.0141 ± 0.0056 (0.0120) | 0.0022 ± 0.00090 (0.0021) |
Sb | 19 | 0.0087 ± 0.002071 (0.00659) | 0.00114 ± 0.00049 (0.00116) | 0.0069 ± 0.0075 (0.0048) | 0.00069 ± 0.00025 (0.00065) |
Sn | 17 | 0.0097 ± 0.0095 (0.00663) | 0.00078 ± 0.00031 (0.000833) | 0.0085 ± 0.0098 (0.0051) | 0.00045 ± 0.00023 (0.00049) |
V | 17 | 0.018 ± 0.011 (0.0146) | 0.0058 ± 0.0026 (0.00620) | 0.0091 ± 0.0098 (0.0052) | 0.0031 ± 0.0017 (0.00291) |
Zn | 17 | 0.168 ± 0.103 (0.155) | 0.065 ± 0.028 (0.0689) | 0.073 ± 0.11 (0.0565) | 0.030 ± 0.0142 (0.0283) |
SO42− | 19 | 33.2 ± 8.01 (32.7) | 3.29 ± 1.47 (3.34) | 28.0 ± 8.04 (26.5) | 1.95 ± 0.94 (1.80) |
OC | 18 | 47.5 ± 13.6 (47.0) | 7.70 ± 2.96 (7.49) | 34.9 ± 13.5 (36.6) | 4.94 ± 1.68 (4.81) |
EC | 19 | 42.4 ± 21.0 (40.5) | 1.22 ± 0.53 (1.24) | 41.2 ± 21.1 (39.2) | 0 |
CC | 19 | 3.23 ± 1.40 (3.28) | 3.23 ± 1.40 (3.28) | 0 | 0 |
rdrs | exh | n-exh | ||
---|---|---|---|---|
N | Mean ± Std | Mean ± SE | Mean ± SE | |
Al | 14 | 0.783 ± 0.058 | 0.032 ± 0.0056 | 119.4 ± 12.0 |
As | 17 | 0.00035 ± 2.5 × 10−5 | 0.000333 ± 3.8 × 10−5 | 0.0759 ± 0.0059 |
Ba | 17 | 0.00704 ± 0.00085 | 0.00240 ± 0.00021 | 1.61 ± 0.029 |
Be | 15 | 3.63 × 10−6 ± 5.8 × 10−7 | 6.98 × 10−6 ± 3.1 × 10−7 | 0.00040 ± 3.1 × 10−5 |
Ca | 16 | 0.586 ± 0.046 | 0.0207 ± 0.0035 | 97.0 ± 5.11 |
Cd | 17 | 2.42 × 10−5 ± 1.6 × 10−6 | 9.34 × 10−6 ± 2.2 × 10−6 | 0.00582 ± 0.00025 |
Cr | 17 | 0.00411 ± 0.0011 | 0.00337 ± 0.00028 | 0.940 ± 0.077 |
Cu | 15 | 0.00452 ± 0.00045 | 0.000575 ± 5.3 × 10−5 | 1.00 ± 0.00 |
Fe | 14 | 0.736 ± 0.059 | 0.0245 ± 0.0055 | 115.0 ± 9.11 |
Mg | 13 | 0.267 ± 0.026 | 0.00738 ± 0.0011 | 45.7 ± 2.56 |
Mn | 15 | 0.00971 ± 0.00069 | 0.00275 ± 4.9 × 10−5 | 1.580 ± 0.14 |
Ni | 13 | 0.00201 ± 0.00022 | 0.000883 ± 0.00016 | 0.456 ± 0.015 |
Pb | 17 | 0.00102 ± 6.6 × 10−5 | 0.000338 ± 2.5 × 10−5 | 0.240 ± 0.0064 |
Sb | 17 | 0.000352 ± 2.8 × 10−5 | 0.000145 ± 7.6 × 10−5 | 0.0760 ± 0.0044 |
Sn | 16 | 0.000254 ± 1.8 × 10−5 | 0.000155 ± 1.3 × 10−5 | 0.117 ± 0.063 |
V | 15 | 0.00190 ± 0.00015 | 0.000165 ± 2.5 × 10−5 | 0.390 ± 0.026 |
Zn | 16 | 0.0210 ± 0.0014 | 0.00170 ± 0.00020 | 4.14 ± 0.21 |
SO42− | 17 | 1.020 ± 0.096 | 0.914 ± 0.100 | 228.0 ± 6.71 |
OC | 16 | 2.280 ± 0.222 | 1.41 ± 0.120 | 564.0 ± 25.5 |
EC | 17 | 0.380 ± 0.180 | 1.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakaş, D.; Berberler, E.; Bayramoğlu Karşı, M.B.; Demir, T.; Aslan, Ö.; Karadeniz, H.; Ağa, Ö.; Yenisoy-Karakaş, S. Simultaneous Quantification of Real-World Elemental Contributions from the Exhaust and Non-Exhaust Vehicular Emissions Using Road Dust Enrichment Factor-Elemental Carbon Tracer Method (EFECT). Atmosphere 2023, 14, 631. https://doi.org/10.3390/atmos14040631
Karakaş D, Berberler E, Bayramoğlu Karşı MB, Demir T, Aslan Ö, Karadeniz H, Ağa Ö, Yenisoy-Karakaş S. Simultaneous Quantification of Real-World Elemental Contributions from the Exhaust and Non-Exhaust Vehicular Emissions Using Road Dust Enrichment Factor-Elemental Carbon Tracer Method (EFECT). Atmosphere. 2023; 14(4):631. https://doi.org/10.3390/atmos14040631
Chicago/Turabian StyleKarakaş, Duran, Ercan Berberler, Melike B. Bayramoğlu Karşı, Tuğçe Demir, Özge Aslan, Hatice Karadeniz, Ömer Ağa, and Serpil Yenisoy-Karakaş. 2023. "Simultaneous Quantification of Real-World Elemental Contributions from the Exhaust and Non-Exhaust Vehicular Emissions Using Road Dust Enrichment Factor-Elemental Carbon Tracer Method (EFECT)" Atmosphere 14, no. 4: 631. https://doi.org/10.3390/atmos14040631
APA StyleKarakaş, D., Berberler, E., Bayramoğlu Karşı, M. B., Demir, T., Aslan, Ö., Karadeniz, H., Ağa, Ö., & Yenisoy-Karakaş, S. (2023). Simultaneous Quantification of Real-World Elemental Contributions from the Exhaust and Non-Exhaust Vehicular Emissions Using Road Dust Enrichment Factor-Elemental Carbon Tracer Method (EFECT). Atmosphere, 14(4), 631. https://doi.org/10.3390/atmos14040631