The Effect of the Cordillera Mountain Range on Tropical Cyclone Rainfall in the Northern Philippines
Abstract
:1. Introduction
2. Data and Methodology
2.1. Historical TC and Precipitation Data
2.2. Weather Research and Forecast Modelling
3. Results
3.1. Evaluation of Control Simulations against Observations
3.2. Effect of Mountain Height on TC Intensity and Track
3.3. Effect of Mountain Height on TC Precipitation
3.4. Relationship between Precipitation, Wind Speed, and Mountain Slope
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, R.B. The Influence of Mountains on the Atmosphere. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 21, pp. 87–230. [Google Scholar] [CrossRef]
- Colle, B.A.; Smith, R.B.; Wesley, D.A. Theory, Observations, and Predictions of Orographic Precipitation. In Mountain Weather Research and Forecasting; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer Atmospheric Sciences; Springer: Dordrecht, The Netherlands, 2013; pp. 291–344. [Google Scholar] [CrossRef]
- Roe, G.H. Orographic Precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- Racoma, B.A.B.; David, C.P.C.; Crisologo, I.A.; Bagtasa, G. The Change in Rainfall from Tropical Cyclones Due to Orographic Effect of the Sierra Madre Mountain Range in Luzon, Philippines. Philipp. J. Sci. 2016, 145, 313–326. Available online: https://philjournalsci.dost.gov.ph/home-1/50-vol-145-no-4-december-2016/617-the-change-in-rainfall-from-tropical-cyclones-due-to-orographic-effect-of-the-sierra-madre-mountain-range-in-luzon-philippines (accessed on 29 May 2019).
- Racoma, B.A.B.; Klingaman, N.P.; Holloway, C.E.; Schiemann, R.K.H.; Bagtasa, G. Tropical Cyclone Characteristics Associated with Extreme Precipitation in the Northern Philippines. Int. J. Climatol. 2022, 42, 3290–3307. [Google Scholar] [CrossRef]
- Sinclair, M.R. A Diagnostic Model for Estimating Orographic Precipitation. J. Appl. Meteorol. Climatol. 1994, 33, 1163–1175. [Google Scholar] [CrossRef]
- Rostom, R.; Lin, Y.-L. Common Ingredients and Orographic Rain Index (ORI) for Heavy Precipitation Associated with Tropical Cyclones Passing Over the Appalachian Mountains. Earth Sci. Res. 2021, 10, 32. [Google Scholar] [CrossRef]
- Kirshbaum, D.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere 2018, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Chen, S.-H.; Liu, L. Orographic Influence on Basic Flow and Cyclone Circulation and Their Impacts on Track Deflection of an Idealized Tropical Cyclone. J. Atmos. Sci. 2016, 73, 3951–3974. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Y.-L.; Chen, S.-H. Effects of Landfall Location and Approach Angle of an Idealized Tropical Cyclone over a Long Mountain Range. Front. Earth Sci. 2016, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-K.; Cheng, L.-W. Distribution and Mechanisms of Orographic Precipitation Associated with Typhoon Morakot (2009). J. Atmos. Sci. 2013, 70, 2894–2915. [Google Scholar] [CrossRef]
- Agyakwah, W.; Lin, Y.-L. Generation and Enhancement Mechanisms for Extreme Orographic Rainfall Associated with Typhoon Morakot (2009) over the Central Mountain Range of Taiwan. Atmos. Res. 2021, 247, 105160. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chou, C.-W.; Chen, S.-H.; Xie, J.-H. Topographic Rainfall of Tropical Cyclones Past a Mountain Range as Categorized by Idealized Simulations. Weather Forecast. 2020, 35, 25–49. [Google Scholar] [CrossRef]
- Tang, C.K.; Chan, J.C.L. Idealized Simulations of the Effect of Taiwan and Philippines Topographies on Tropical Cyclone Tracks: Effect of Topography on Tropical Cyclone Tracks. Q. J. R. Meteorol. Soc. 2014, 140, 1578–1589. [Google Scholar] [CrossRef]
- Olaguera, L.M.P.; Cruz, F.A.T.; Dado, J.M.B.; Villarin, J.R.T. Complexities of Extreme Rainfall in the Philippines. In Extreme Natural Events; Unnikrishnan, A.S., Tangang, F., Durrheim, R.J., Eds.; Springer Nature: Singapore, 2022; pp. 129–146. [Google Scholar] [CrossRef]
- Bagtasa, G. Contribution of Tropical Cyclones to Rainfall in the Philippines. J. Clim. 2017, 30, 3621–3633. [Google Scholar] [CrossRef]
- Macalalad, R.V.; Badilla, R.A.; Cabrera, O.C.; Bagtasa, G. Hydrological Response of the Pampanga River Basin in the Philippines to Intense Tropical Cyclone Rainfall. J. Hydrometeorol. 2021, 22, 781–794. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Okazumi, T.; Miyamoto, M.; Nabesaka, S.; Tanaka, S.; Sugiura, A. Fundamental Analysis for Flood Risk Management in the Selected River Basins of Southeast Asia. J. Disaster Res. 2014, 9, 858–869. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Knapp, K.R.; Diamond, H.J.; Kossin, J.P.; Kruk, M.C.; Schreck, C.J. International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4; National Centers for Environmental Information location: Asheville, NC, USA, 2018. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Late Precipitation L3 1 Day 0.1 Degree x 0.1 Degree V06; Savtchenko, A., Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDL_06/summary (accessed on 24 October 2022).
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Wang, W.; Huang, X.-Y.; Duda, M. A Description of the Advanced Research WRF, Version 3; UCAR/NCAR: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Flores, R.A.A. Geovisual Analytics on the Verification of the PAGASA Operational Numerical Weather Prediction Model Rainfall Forecast. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W19, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Tolentino, J.T.; Bagtasa, G. Calibration of Kain–Fritsch Cumulus Scheme in Weather Research and Forecasting (WRF) Model over Western Luzon, Philippines. Meteorol. Atmos. Phys. 2021, 133, 771–780. [Google Scholar] [CrossRef]
- Bagtasa, G. Analog Forecasting of Tropical Cyclone Rainfall in the Philippines. Weather Clim. Extrem. 2021, 32, 100323. [Google Scholar] [CrossRef]
- Delfino, R.J.; Bagtasa, G.; Hodges, K.; Vidale, P.L. Sensitivity of Simulating Typhoon Haiyan (2013) Using WRF: The Role of Cumulus Convection, Surface Flux Parameterizations, Spectral Nudging, and Initial and Boundary Conditions. Nat. Hazards Earth Syst. Sci. 2022, 22, 3285–3307. [Google Scholar] [CrossRef]
- Cruz, F.T.; Narisma, G.T. WRF Simulation of the Heavy Rainfall over Metropolitan Manila, Philippines during Tropical Cyclone Ketsana: A Sensitivity Study. Meteorol. Atmos. Phys. 2016, 128, 415–428. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Yáñez-Morroni, G.; Gironás, J.; Caneo, M.; Delgado, R.; Garreaud, R. Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere 2018, 9, 304. [Google Scholar] [CrossRef] [Green Version]
- Aragon, L.G.B.; Pura, A.G. Analysis of the Displacement Error of the WRF-ARW Model in Predicting Tropical Cyclone Tracks over the Philippines: Analysis of the Displacement Error of the WRF-ARW Model in TC Tracks. Meteorol. Appl. 2016, 23, 401–408. [Google Scholar] [CrossRef]
- Chen, G.; Yu, H.; Cao, Q. Evaluation of Tropical Cyclone Forecasts from Operational Global Models Over the Western North Pacific in 2013. Trop. Cyclone Res. Rev. 2015, 4, 18–26. [Google Scholar] [CrossRef]
- Bagtasa, G. Assessment of Tropical Cyclone Rainfall from GSMaP and GPM Products and Their Application to Analog Forecasting in the Philippines. Atmosphere 2022, 13, 1398. [Google Scholar] [CrossRef]
- Hsu, J.; Huang, W.-R.; Liu, P.-Y. Performance Assessment of GPM-Based near-Real-Time Satellite Products in Depicting Diurnal Precipitation Variation over Taiwan. J. Hydrol. Reg. Stud. 2021, 38, 100957. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Bender, M.A.; Tuleya, R.E.; Kurihara, Y. A Numerical Study of the Effect of Island Terrain on Tropical Cyclones. Mon. Weather Rev. 1987, 115, 130–155. [Google Scholar] [CrossRef]
- Chu, C.-M.; Lin, Y.-L. Effects of Orography on the Generation and Propagation of Mesoscale Convective Systems in a Two-Dimensional Conditionally Unstable Flow. J. Atmos. Sci. 2000, 57, 3817–3837. [Google Scholar] [CrossRef]
- Man-Chi, W.; Chun-Wing, C. An Observational Study of the Changes in the Intensity and Motion of Tropical Cyclones Crossing Luzon. Trop. Cyclone Res. Rev. 2015, 4, 15. [Google Scholar] [CrossRef]
- Lawrence, B.N.; Bennett, V.L.; Churchill, J.; Juckes, M.; Kershaw, P.; Pascoe, S.; Pepler, S.; Pritchard, M.; Stephens, A. Storing and Manipulating Environmental Big Data with JASMIN. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; IEEE: Silicon Valley, CA, USA, 2013; pp. 68–75. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, S.; Hamman, J. xarray: N-D Labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Ladwig, W. wrf-Python, Version 1.3.2.6; UCAR/NCAR: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
Number of Domains | Two |
Horizontal Grid Spacing | 15 km (outer), 5 km (inner) |
Cumulus Parameterisation | Kain–Fritsch Scheme |
Microphysics | WRF Single-Moment 6-class Microphysics Scheme |
Planetary Boundary Layer | ACM2 Scheme |
Longwave Radiation | Rapid Radiative Transfer Model Scheme |
Shortwave Radiation | Dudhia Scheme |
Surface Physics | Unified Noah Land-Surface Model |
Model Time-Step | Adaptive Time-Step |
Initial and Boundary Conditions | ERA5 |
TC Name | Date of Philippine Landfall | Intensity Upon Luzon Landfall (Millibars) | DPE (km) |
---|---|---|---|
Bebinca | 2 November 2000 | 990 | 128.00 |
Imbudo | 22 July 2003 | 950 | 115.73 |
Prapiroon | 31 July 2006 | 1002 | 142.06 |
Cimaron | 29 October 2006 | 920 | 102.06 |
Megi | 18 October 2010 | 885 | 182.56 |
Nesat | 26 September 2011 | 950 | 66.67 |
Nari | 11 October 2013 | 970 | 141.32 |
Koppu | 17 October 2015 | 925 | 68.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racoma, B.A.B.; Holloway, C.E.; Schiemann, R.K.H.; Feng, X.; Bagtasa, G. The Effect of the Cordillera Mountain Range on Tropical Cyclone Rainfall in the Northern Philippines. Atmosphere 2023, 14, 643. https://doi.org/10.3390/atmos14040643
Racoma BAB, Holloway CE, Schiemann RKH, Feng X, Bagtasa G. The Effect of the Cordillera Mountain Range on Tropical Cyclone Rainfall in the Northern Philippines. Atmosphere. 2023; 14(4):643. https://doi.org/10.3390/atmos14040643
Chicago/Turabian StyleRacoma, Bernard Alan B., Christopher E. Holloway, Reinhard K. H. Schiemann, Xiangbo Feng, and Gerry Bagtasa. 2023. "The Effect of the Cordillera Mountain Range on Tropical Cyclone Rainfall in the Northern Philippines" Atmosphere 14, no. 4: 643. https://doi.org/10.3390/atmos14040643
APA StyleRacoma, B. A. B., Holloway, C. E., Schiemann, R. K. H., Feng, X., & Bagtasa, G. (2023). The Effect of the Cordillera Mountain Range on Tropical Cyclone Rainfall in the Northern Philippines. Atmosphere, 14(4), 643. https://doi.org/10.3390/atmos14040643