Ionospheric Electron Density Model by Electron Density Grid Deep Neural Network (EDG-DNN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Preprocessing
2.2. IRI-2016 Model
2.3. COSMIC_DNN Model Introduction
3. Results
3.1. Comparison with COSMIC Electron Density Data and IRI-2016
3.2. Changes of Electron Density during Magnetic Storms
3.3. Global Distribution Characteristic of Ionospheric Electron Density
4. Discussion
5. Conclusions
- The EDG-DNN model can present a gridded ionospheric electron density distribution with more accurate predictions. It can also be used as a reliable electron density reference model for further studies of the ionosphere.
- The EDG-DNN model learns the distribution features of a vast quantity of electron density data in order to better depict the structure of the ionosphere, such as the equatorial bimodal structure, in the forecast. It can also reflect the electron density variation and distribution during magnetic storms to some extent, which is important for further research into the electron density variation and dispersion during magnetic storms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherniak, I.; Zakharenkova, I. Validation of FORMOSAT-3/COSMIC radio occultation electron density profiles by incoherent scatter radar data. Adv. Space Res. 2014, 53, 1304–1312. [Google Scholar] [CrossRef]
- Austen, J.R.; Franke, S.J.; Liu, C.H.; Yeh, K.C. Application of computerized tomography techniques to ionospheric research. In Proceedings of the International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Oulu, Finland, 9–14 June 1986; Tauriainin, A., Ed.; Part 1 (A87–50101 22–46). University of Oulu: Oulu, Finland, 1986; pp. 25–35. [Google Scholar]
- Raymund, T.D.; Austen, J.R.; Franke, S.J.; Liu, C.H.; Klobuchar, J.A.; Stalker, J. Application of computerized tomography to the investigation of ionospheric structures. Radio Sci. 1990, 25, 771–789. [Google Scholar] [CrossRef]
- Heaton, J.A.T.; Pryse, S.E.; Kersley, L. Improved background representation, ionosonde input and independent verification in experimental ionospheric tomography. Ann. Geophys. 1995, 13, 1297–1302. [Google Scholar] [CrossRef]
- Kersley, L.; Heaton, J.A.T.; Pryse, S.E.; Raymund, T.D. Experimental ionospheric tomography with ionosonde input and EISCAT verification. Ann. Geophys. 1993, 11, 1064–1074. [Google Scholar] [CrossRef]
- Mitchell, C.N.; Jones, D.G.; Kersley, L.; Pryse, S.E.; Walker, I.K. Imaging of field-aligned structures in the auroral ionosphere. Ann. Geophys.-Eur. Geophys. Soc. 1995, 13, 1311–1319. [Google Scholar]
- Vasicek, C.; Kronschnabl, G. Ionospheric tomography: An algorithm enhancement. J. Atmos. Terr. Phys. 1995, 57, 875–888. [Google Scholar] [CrossRef]
- Pryse, S.; Kersley, L.; Williams, M.; Walker, I.; Willson, C. Tomographic imaging of the polar-cap ionosphere over svalbard. J. Atmos. Solar-Terr. Phys. 1997, 59, 1953–1959. [Google Scholar] [CrossRef]
- Rius, A.; Ruffini, G.; Cucurull, L. Improving the vertical resolution of ionospheric tomography with GPS Occultations. Geophys. Res. Lett. 1997, 24, 2291–2294. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Mei, D.; Zhang, X.; Freeshah, M.; Xiong, S. Electron Density Reconstruction by Ionospheric Tomography From the Combination of GNSS and Upcoming LEO Constellations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029074. [Google Scholar] [CrossRef]
- Erturk, O.; Arikan, O.; Arikan, F. Tomographic Reconstruction of the Ionospheric Electron Density in terms of Wavelets. Iran. Aerosp. Soc. 2010, 43, 1702–1710. [Google Scholar]
- Chartier, A.T.; Smith, N.D.; Mitchell, C.N.; Jackson, D.R.; Patilongo, P.J.C. The use of ionosondes in GPS ionospheric tomography at low latitudes. J. Geophys. Res. Atmos. 2012, 117, A10326. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.; Edemskiy, I.; Gavrilyuk, N.S.; Ishin, A.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.; et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.F.; Maruyama, T.; Ma, G.; Takeda, T. Three-dimensional ionospheric tomography using observation data of GPS ground receivers and ionosonde by neural network. J. Geophys. Res. Atmos. 2005, 110, A05308. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Mckinnell, L.; Opperman, B. Regional Ionospheric TEC Modelling; Working towards Mapping Africa’s Ionosphere. In General Assembly & Scientific Symposium; IEEE: Washington, DC, USA, 2011. [Google Scholar]
- Habarulema, J.B.; Okoh, D.; Burešová, D.; Rabiu, B.; Tshisaphungo, M.; Kosch, M.; Häggström, I.; Erickson, P.J.; Milla, M.A. A global 3-D electron density reconstruction model based on radio occultation data and neural networks. J. Atmos. Solar-Terr. Phys. 2021, 221, 105702. [Google Scholar] [CrossRef]
- Muhammad, A.; Külahcı, F.; Birel, S. Investigating radon and TEC anomalies relative to earthquakes via AI models. J. Atmos. Solar-Terr. Phys. 2023, 245, 106037. [Google Scholar] [CrossRef]
- Zhukov, A.; Sidorov, D.; Mylnikova, A.; Yasyukevich, Y. Machine Learning Methodology for Ionosphere Total Electron Content Nowcasting. Int. J. Artif. Intell. 2018, 16, 144–157. [Google Scholar] [CrossRef]
- Song, R.; Zhang, X.; Zhou, C.; Liu, J.; He, J. Predicting TEC in China based on the neural networks optimized by genetic algorithm. Adv. Space Res. 2018, 62, 745–759. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, M.; Deng, Y.; Wang, J.; Huang, H.; Deng, X.; Huang, C. Improvement of a Deep Learning Algorithm for Total Electron Content Maps: Image Completion. J. Geophys. Res. Space Phys. 2019, 124, 790–800. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liao, W.; Li, H.; Wang, J.; Deng, X.; Hong, S. Prediction of Global Ionospheric TEC Based on Deep Learning. Space Weather 2022, 20, e2021SW002854. [Google Scholar] [CrossRef]
- Cesaroni, C.; Spogli, L.; Aragon-Angel, A.; Fiocca, M.; Dear, V.; De Franceschi, G.; Romano, V. Neural network based model for global Total Electron Content forecasting. J. Space Weather Space Clim. 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Tsai, L.C.; Tsai, W.H.; Schreiner, W.S.; Berkey, F.T.; Liu, J.Y. Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planets Space 2001, 53, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Sizikov, V.; Sidorov, D. Generalized quadrature for solving singular integral equations of Abel type in application to infrared tomography. Appl. Numer. Math. 2016, 106, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Schreiner, W.S.; Lei, J.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C.; Kuo, Y.H. Error analysis of Abel retrieved electron density profiles from radio occultation measurements. In Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences; Copernicus Publications: Göttingen, Germany, 2010. [Google Scholar]
- Wu, X.; Hu, X.; Gong, X.; Zhang, X.; Wang, X. Analysis of inversion errors of ionospheric radio occultation. GPS Solut. 2009, 13, 231–239. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, C.J.; Truhlik, V.; Richards, P.; McKinnell, L.-A.; Reinisch, B.W. The International Reference Ionosphere 2012—A model of international collaboration. J. Space Weather Space Clim. 2014, 4, A07. [Google Scholar] [CrossRef]
- Bengio, Y.; Lecun, Y. Scaling learning algorithms towards AI. In Large-Scale Kernel Machines; George Mason University: Fairfax, VA, USA, 2007; pp. 321–359. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Latitude | EDG-DNN Model | IRI-2016 Model | ||
---|---|---|---|---|
MAD | RMSE | MAD | RMSE | |
70° S–90° S | 0.877 | 0.992 | 0.979 | 1.158 |
50° S–70° S | 0.339 | 0.424 | 0.495 | 0.633 |
30° S–50° S | 0.434 | 0.503 | 0.368 | 0.414 |
10° S–30° S | 0.462 | 0.579 | 0.559 | 0.629 |
10° S–10° N | 0.415 | 0.575 | 0.746 | 0.893 |
10° N–30° N | 0.424 | 0.523 | 0.628 | 0.751 |
30° N–50° N | 0.311 | 0.407 | 0.511 | 0.609 |
50° N–70° N | 0.285 | 0.353 | 0.399 | 0.457 |
70° N–90° N | 0.726 | 0.819 | 1.002 | 1.201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; An, B.; Liao, W.; Wang, Y.; Tang, R.; Wang, J.; Deng, X. Ionospheric Electron Density Model by Electron Density Grid Deep Neural Network (EDG-DNN). Atmosphere 2023, 14, 810. https://doi.org/10.3390/atmos14050810
Chen Z, An B, Liao W, Wang Y, Tang R, Wang J, Deng X. Ionospheric Electron Density Model by Electron Density Grid Deep Neural Network (EDG-DNN). Atmosphere. 2023; 14(5):810. https://doi.org/10.3390/atmos14050810
Chicago/Turabian StyleChen, Zhou, Bokun An, Wenti Liao, Yungang Wang, Rongxin Tang, Jingsong Wang, and Xiaohua Deng. 2023. "Ionospheric Electron Density Model by Electron Density Grid Deep Neural Network (EDG-DNN)" Atmosphere 14, no. 5: 810. https://doi.org/10.3390/atmos14050810
APA StyleChen, Z., An, B., Liao, W., Wang, Y., Tang, R., Wang, J., & Deng, X. (2023). Ionospheric Electron Density Model by Electron Density Grid Deep Neural Network (EDG-DNN). Atmosphere, 14(5), 810. https://doi.org/10.3390/atmos14050810