The Chemical Characteristics of Rainwater and Wet Atmospheric Deposition Fluxes at Two Urban Sites and One Rural Site in Côte d’Ivoire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites Description
2.2. Meteorological Quantities
2.3. Sample Collection
2.4. Analytical Procedures and Quality Assurance/Quality Control
2.5. Satellite Data
2.6. Calculations and Statistics
2.7. Back Trajectories
3. Results and Discussion
3.1. Sites Climatology
3.2. Chemical Composition of Rainwater and Wet Deposition Fluxes
3.2.1. Marine Contribution
3.2.2. Terrigenous Contribution
3.2.3. Nitrogenous Contribution
3.2.4. pH and Acid Contribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Abidjan | Lamto | Korhogo | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019–2020 | 2019 | 2020 | 2019–2020 | 2019 | 2020 | 2019–2020 | ||||||||||
VWM | WD | VWM | WD | VWM | WD | VWM | WD | VWM | WD | VWM | WD | VWM | WD | VWM | WD | VWM | WD | |
H+ | 4.00 | 0.05 | 4.14 | 0.07 | 4.1 (±0.09) | 0.06 (±0.01) | 6.54 | 0.10 | 6.62 | 0.07 | 6.57 (±0.06) | 0.09 (±0.02) | 2.59 | 0.03 | 5.65 | 0.06 | 4.09 (±2.16) | 0.05 (±0.02) |
pH | 5.57 | - | 5.89 | - | 5.76 | - | 5.24 | - | 5.38 | - | 5.31 | - | 5.70 | - | 5.40 | - | 5.57 | - |
Na+ | 19.00 | 5.93 | 30.95 | 11.34 | 26 (±8.43) | 8.8 (±3.82) | 4.46 | 1.55 | 6.82 | 1.73 | 5.41 (±1.67) | 1.62 (±0.13) | 16.65 | 4.45 | 2.40 | 0.60 | 11.24 (±10.08) | 3 (±2.83) |
NH4+ | 25.19 | 6.16 | 20.70 | 5.94 | 22.6 (±3.18) | 6 (±0.15) | 16.47 | 4.48 | 20.01 | 3.97 | 17.9 (±2.50) | 4.20 (±0.36) | 18.40 | 3.86 | 16.55 | 3.23 | 17.38 (±1.31) | 3.50 (±0.54) |
N in NH4+ | 19.64 | 4.80 | 16.14 | 4.63 | 17.63 | 4.68 | 12.84 | 3.49 | 15.60 | 3.09 | 13.96 | 3.27 | 14.35 | 3.01 | 12.90 | 2.51 | 13.55 | 2.73 |
K+ | 3.78 | 2.00 | 5.09 | 3.17 | 4.5 (±0.93) | 2.62 (±0.83) | 1.80 | 1.06 | 2.80 | 0.99 | 2 (±0.35) | 1.02 (±0.05) | 12.43 | 5.65 | 2.06 | 0.87 | 8.63 (±7.34) | 3.80 (±3.52) |
Ca2+ | 24.19 | 6.57 | 48.35 | 15.44 | 38.3 (±17.08) | 11.32 (±6.27) | 7.93 | 2.40 | 12.85 | 2.84 | 9.91 (±3.48) | 2.59 (±0.31) | 24.08 | 5.61 | 13.27 | 2.88 | 20.09 (±7.64) | 4.50 (±2.07) |
Mg2+ | 5.49 | 0.90 | 8.74 | 1.67 | 7.4 (±2.30) | 1.31 (±0.55) | 2.19 | 0.40 | 3.12 | 0.42 | 2.57 (±0.65) | 0.40 (±0.01) | 4.07 | 0.57 | 2.35 | 0.31 | 3.4 (±1.21) | 0.50 (±0.20) |
NO3− | 8.79 | 7.39 | 12.77 | 12.62 | 11.1 (±2.81) | 10.16 (±3.70) | 6.26 | 5.86 | 8.63 | 5.89 | 7.22 (±1.67) | 5.84 (±0.03) | 10.72 | 7.73 | 6.97 | 4.68 | 9.09 (±2.65) | 6.30 (±2.34) |
N in NO3− | 2.02 | 1.69 | 2.93 | 2.90 | 2.55 | 2.33 | 1.43 | 1.34 | 1.98 | 1.35 | 1.66 | 1.34 | 2.46 | 1.77 | 1.60 | 1.07 | 2.09 | 1.45 |
Cl− | 24.40 | 11.74 | 37.44 | 21.18 | 32 (±9.22) | 16.77 (±6.68) | 4.76 | 2.55 | 7.27 | 2.84 | 5.77 (±1.77) | 2.67 (±0.21) | 13.71 | 5.66 | 2.44 | 0.94 | 9.57 (±7.94) | 3.80 (±3.48) |
SO42− | 19.49 | 12.69 | 19.38 | 14.83 | 19.5 (±0.08) | 13.76 (±1.52) | 4.24 | 3.07 | 5.54 | 2.93 | 4.76 (±0.92) | 2.99 (±0.10) | 6.01 | 3.35 | 3.84 | 2.00 | 5.27 (±1.53) | 2.80 (±1.04) |
S in SO42− | 6.43 | 4.18 | 6.39 | 4.89 | 6.43 | 4.50 | 1.39 | 1.01 | 1.82 | 0.96 | 1.57 | 0.98 | 1.98 | 1.10 | 1.26 | 0.66 | 1.73 | 0.92 |
* tCarb | 7.17 | 2.99 | 17.04 | 16.57 | 12 (±4.01) | 11 (±5.51) | 2.29 | 1.73 | 3.50 | 1.93 | 2.78 (±0.80) | 2.21 (±0.64) | 5.17 | 0.06 | 2.52 | 0.67 | 4.54 (±1.87) | 3.10 (±0.19) |
HCOO− | 5.57 | 3.48 | 7.76 | 5.70 | 6.80 (±1.55) | 4.65 (±1.57) | 9.74 | 6.76 | 14.12 | 7.16 | 11.51 (±3.10) | 6.91 (±0.28) | 8.71 | 4.66 | 11.18 | 5.57 | 9.97 (±1.75) | 5.20 (±0.53) |
CH3COO− | 3.21 | 2.57 | 6.72 | 6.33 | 5.30 (±2.48) | 4.57 (±2.66) | 5.40 | 4.81 | 8.47 | 5.51 | 6.64 (±2.17) | 5.11 (±0.49) | 5.16 | 3.54 | 5.51 | 3.52 | 5.61 (±0.24) | 3.70 (±0.10) |
C2H5COO− | <LOD | - | <LOD | - | <LOD | - | <LOD | - | 0.14 | - | 0.10 (±0.04) | - | <LOD | - | <LOD | - | <LOD | - |
C2O42− | 4.08 | 1.69 | 1.28 | 1.83 | 1.4 (±0.24) | 1.89 (±0.60) | 0.94 | 0.64 | 1.41 | 0.70 | 1.13 (±0.33) | 1.33 (±0.04) | 3.09 | 1.62 | 0.48 | 0.39 | 2.09 (±1.85) | 1.10 (±0.19) |
Sites | Sea Water Ratios [39] | Cl−/Na+ | SO42−/Na+ | K+/Na+ | Ca2+/Na+ | Mg2+/Na+ |
---|---|---|---|---|---|---|
1.167 | 0.121 | 0.022 | 0.044 | 0.227 | ||
Abidjan | Ratios in rain | 1.23 | 0.75 | 0.17 | 1.47 | 0.28 |
EFMARINE | 1 | 6 | 8 | 33 | 1 | |
SSF (%) | 94 | 15 | 13 | 3 | 81 | |
Lamto | Ratios in rain | 1.07 | 0.88 | 0.37 | 1.83 | 0.47 |
EFMARINE | 1 | 7 | 17 | 42 | 2 | |
SSF (%) | 92 | 10 | 5 | 2 | 35 | |
Korhogo | Ratios in rain | 0.85 | 0.47 | 0.77 | 1.79 | 0.3 |
EFMARINE | 1 | 1 | 35 | 41 | 1 | |
SSF (%) | 100 | 16 | 3 | 2 | 75 |
Sites | Crustal Water Ratios [39] | Cl−/Ca2+ | SO42−/Ca2+ | K+/Ca2+ | Mg2+/Ca2+ |
---|---|---|---|---|---|
0.0031 | 0.0188 | 0.504 | 0.561 | ||
Abidjan | Ratios in rain | 0.84 | 0.65 | 0.12 | 0.19 |
EFCRUSTAL | 270 | 27 | 0.23 | 0.3 | |
NSSF (%) | 6 | 85 | 87 | 19 | |
Lamto | Ratios in rain | 0.58 | 0.48 | 0.20 | 0.26 |
EFCRUSTAL | 26 | 26 | 0.1 | 0.5 | |
NSSF (%) | 8 | 90 | 96 | 65 | |
Korhogo | Ratios in rain | 0.44 | 0.93 | 0.28 | 0.61 |
EFCRUSTAL | 141 | 49 | 0.26 | 1.1 | |
NSSF (%) | 0 | 74 | 97 | 25 |
References
- Galy-Lacaux, C.; Laouali, D.; Descroix, L.; Gobron, N.; Liousse, C. Long Term Precipitation Chemistry and Wet Deposition in a Remote Dry Savanna Site in Africa (Niger). Atmos. Chem. Phys. 2009, 9, 1579–1595. [Google Scholar] [CrossRef] [Green Version]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.-U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C.; et al. A Global Assessment of Precipitation Chemistry and Deposition of Sulfur, Nitrogen, Sea Salt, Base Cations, Organic Acids, Acidity and PH, and Phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef]
- Fu, Y.; Li, F.; Guo, S.; Zhao, M. Cadmium Concentration and Its Typical Input and Output Fluxes in Agricultural Soil Downstream of a Heavy Metal Sewage Irrigation Area. J. Hazard. Mater. 2021, 412, 125203. [Google Scholar] [CrossRef]
- Laouali, D.; Delon, C.; Adon, M.; Ndiaye, O.; Saneh, I.; Gardrat, E.; Dias-Alves, M.; Tagesson, T.; Fensohlt, R.; Galy-Lacaux, C. Source Contributions in Precipitation Chemistry and Analysis of Atmospheric Nitrogen Deposition in a Sahelian Dry Savanna Site in West Africa. Atmos. Res. 2021, 251, 105423. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The Global Nitrogen Cycle in the Twenty-First Century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, NY, USA, 1998; ISBN 978-0-471-17815-6. [Google Scholar]
- Laouali, D.; Galy-Lacaux, C.; Diop, B.; Delon, C.; Orange, D.; Lacaux, J.P.; Akpo, A.; Lavenu, F.; Gardrat, E.; Castera, P. Long Term Monitoring of the Chemical Composition of Precipitation and Wet Deposition Fluxes over Three Sahelian Savannas. Atmos. Environ. 2012, 50, 314–327. [Google Scholar] [CrossRef]
- Akpo, A.B.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C. Precipitation Chemistry and Wet Deposition in a Remote Wet Savanna Site in West Africa: Djougou (Benin). Atmos. Environ. 2015, 115, 110–123. [Google Scholar] [CrossRef]
- Keresztesi, Á.; Birsan, M.-V.; Nita, I.-A.; Bodor, Z.; Szép, R. Assessing the Neutralisation, Wet Deposition and Source Contributions of the Precipitation Chemistry over Europe during 2000–2017. Environ. Sci. Eur. 2019, 31, 50. [Google Scholar] [CrossRef] [Green Version]
- Moreda-Piñeiro, J.; Alonso-Rodríguez, E.; Moscoso-Pérez, C.; Blanco-Heras, G.; Turnes-Carou, I.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Influence of Marine, Terrestrial and Anthropogenic Sources on Ionic and Metallic Composition of Rainwater at a Suburban Site (Northwest Coast of Spain). Atmos. Environ. 2014, 88, 30–38. [Google Scholar] [CrossRef]
- Martins, E.H.; Nogarotto, D.C.; Mortatti, J.; Pozza, S.A. Chemical Composition of Rainwater in an Urban Area of the Southeast of Brazil. Atmos. Pollut. Res. 2019, 10, 520–530. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, F.; Ciais, P.; Miao, C.; Yang, T.; Jia, Y.; Zhou, X.; Klaus, B.-B.; Yang, T.; Yu, G. Human Activities Aggravate Nitrogen-Deposition Pollution to Inland Water over China. Natl. Sci. Rev. 2020, 7, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Galy-Lacaux, C.; Modi, A.I. Precipitation Chemistry in the Sahelian Savanna of Niger, Africa. J. Atmos. Chem. 1998, 30, 319–343. [Google Scholar] [CrossRef]
- Yoboué, V.; Galy-Lacaux, C.; Lacaux, J.P.; Silué, S. Rainwater Chemistry and Wet Deposition over the Wet Savanna Ecosystem of Lamto (Côte d’Ivoire). J. Atmos. Chem. 2005, 52, 117–141. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs Population Dynamics. UN World Urban Population World Urbanization Prospects the 2011 Revision; United Nations: New York, NY, USA, 2011. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. Population Division World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations: New York, NY, USA, 2017. [Google Scholar]
- World Bank. World Bank Towards Environmentally Sustainable Development in Sub-Saharan Africa. In Africa Region Findings & Good Practice Infobriefs; No. 78.; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- World Meteorological Organization. State of the Climate in Africa 2020; WMO-No. 1275; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Gnamien, S.; Yoboué, V.; Liousse, C.; Ossohou, M.; Keita, S.; Bahino, J.; Siélé, S.; Diaby, L. Particulate Pollution in Korhogo and Abidjan (Cote d’Ivoire) during the Dry Season. Aerosol Air Qual. Res. 2021, 21, 200201. [Google Scholar] [CrossRef]
- INS, Institut National de Statisitique. RPGH2014, 2014, Recensement Général de la Population et l’Habitat, Rapport d’Exécution et Presentation des Principaux Résultats. Available online: https://www.ins.ci/ (accessed on 26 April 2023).
- Keita, S.; Liousse, C.; Assamoi, E.-M.; Doumbia, T.; N’Datchoh, E.T.; Gnamien, S.; Elguindi, N.; Granier, C.; Yoboué, V. African Anthropogenic Emissions Inventory for Gases and Particles from 1990 to 2015. Earth Syst. Sci. Data 2021, 13, 3691–3705. [Google Scholar] [CrossRef]
- Yao, K.; Echui, A. Desiré, Renouvellement du Parc Automobile et Développement Durable en Côte D’ivoire. In Proceedings of the Conférence CODATU XVII-Mobilité Intelligente, Inclusive et Soutenable Mobilité Intelligente, Inclusive et Soutenable Hyderabad (Inde), Hyderabad, India, 4–6 November 2017. [Google Scholar]
- Kouadio, K.Y.; Ali, K.E.; Zahiri, E.P.; Assamoi, A.P. Etude de La Prédictibilité de La Pluviométrie En Côte d’Ivoire Durant La Période de Juillet à Septembre. Rev. Ivoir. Des Sci. Technol. 2007, 10, 117–134. [Google Scholar]
- Bassett, T.J. Le Boom de l’anacarde Dans Le Bassin Cotonnier Du Nord Ivoirien: Structures de Marché et Prix à La Production. Afr. Contemp. 2018, 263264, 59–83. [Google Scholar] [CrossRef]
- Sangare, N.; Doho, B.T.A.; Kouakou, B.; Koffi, B.É. Urban Dynamics and Governance of Peri-Urban Neighbourhoods in the City of Korhogo (Côte d’Ivoire) from 2002 to 2020. Revue de Géographie Tropicale et d’Environnement, 1, 2021. EDUCI 2021. [Google Scholar]
- Roger, D.M.; Abou, D.; Dénis, H.K.; Koffi, B.É. Émergence De Taxi-Motos Et Recomposition SpatioÉconomique À Korhogo: Les Taxi-Villes Entre Stratégies D’adaptation Et Désespoir. Eur. Sci. J. ESJ 2016, 12, 190. [Google Scholar] [CrossRef]
- Gautier, L. Contact Foret-Savane En Côte d’Ivoire Centrale: Evolution de La Surface Forestiere de La Reserve de Lamto (Sud Du V-Baoule.) Candoella, Bulletin de la Société Botanique de France. Actual. Bot. 1989, 136, 85–92. [Google Scholar]
- Diawara, A.; Yoroba, F.; Kouadio, K.Y.; Kouassi, K.B.; Assamoi, E.M.; Diedhiou, A.; Assamoi, P. Climate Variability in the Sudano-Guinean Transition Area and Its Impact on Vegetation: The Case of the Lamto Region in Côte D’Ivoire. Adv. Meteorol. 2014, 2014, 831414. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. Global Atmosphere Watch Manual for the Gaw Precipitation Chemistry Programme Guidelines, Data Quality Objectives and Standard Operating Procedures No 160.; WMO: Geneva, Switzerland, 2004. [Google Scholar]
- Shephard, M.W.; Cady-Pereira, K.E. Cross-Track Infrared Sounder (CrIS) Satellite Observations of Tropospheric Ammonia. Atmos. Meas. Tech. 2015, 8, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Shephard, M.W.; Dammers, E.; Cady-Pereira, K.E.; Kharol, S.K.; Thompson, J.; Gainariu-Matz, Y.; Zhang, J.; McLinden, C.A.; Kovachik, A.; Moran, M.; et al. Ammonia Measurements from Space with the Cross-Track Infrared Sounder: Characteristics and Applications. Atmos. Chem. Phys. 2020, 20, 2277–2302. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; Lamsal, L.N.; Celarier, E.A.; Swartz, W.H.; Marchenko, S.V.; Bucsela, E.J.; Chan, K.L.; Wenig, M.; Zara, M. The Version 3 OMI NO2 Standard Product. Atmospheric Meas. Tech. 2017, 10, 3133–3149. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Hess, G.D. Description of the HYSPLIT-4 Modeling System. NOAA Technical Memorandum ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1997; pp. 1–24. [Google Scholar]
- Kok, L.; Van Zyl, P.G.; Beukes, J.P.; Swartz, J.S.; Burger, R.P.; Ellis, S.; Josipovic, M.; Vakkari, V.; Laakso, L.; Kulmala, M. Chemical Composition of Rain at a Regional Site on the South African Highveld. Water SA 2021, 47, 326–337. [Google Scholar] [CrossRef]
- Kouadio, Y.K.; Ochou, D.A.; Servain, J. Tropical Atlantic and Rainfall Variability in Côte d’Ivoire. Geophys. Res. Lett. 2003, 30, CLI5-1. [Google Scholar] [CrossRef]
- Goula, B.T.; Srohourou, B.; Brida, A.; N’zué, K.A.; Goroza, G. Determination and Variability of Growing Seasons in Cote d’Ivoire. Int. J. Eng. Sci. 2010, 2, 5993–6003. [Google Scholar]
- Leroux, M. The Meteorology and Climate of Tropical Africa. In Springer-Praxis Books in Environmental Sciences; Springer: Chichester, UK, 2001; ISBN 978-1-85233-643-1. [Google Scholar]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E. Sea-Salt Corrections and Interpretation of Constituent Ratios in Marine Precipitation. J. Geophys. Res. 1986, 91, 6647. [Google Scholar] [CrossRef]
- Sarr, M.A. Évolution Récente du Climat et de la Végétation au Sénégal: Cas du Bassin Versant du Ferlo. Ph.D. Thesis, Université Jean Moulin, Lyon, France, 2009. [Google Scholar]
- Cao, Y.-Z.; Wang, S.; Zhang, G.; Luo, J.; Lu, S. Chemical Characteristics of Wet Precipitation at an Urban Site of Guangzhou, South China. Atmos. Res. 2009, 94, 462–469. [Google Scholar] [CrossRef]
- Niu, H.; He, Y.; Zhu, G.; Xin, H.; Du, J.; Pu, T.; Lu, X.; Zhao, G. Environmental Implications of the Snow Chemistry from Mt. Yulong, Southeastern Tibetan Plateau. Quat. Int. 2013, 313, 168–178. [Google Scholar] [CrossRef]
- Conradie, E.H.; Van Zyl, P.G.; Pienaar, J.J.; Beukes, J.P.; Galy-Lacaux, C.; Venter, A.D.; Mkhatshwa, G.V. The Chemical Composition and Fluxes of Atmospheric Wet Deposition at Four Sites in South Africa. Atmos. Environ. 2016, 146, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Hoinaski, L.; Franco, D.; Haas, R.; Martins, R.F.; Lisboa, H.d.M. Investigation of Rainwater Contamination Sources in the Southern Part of Brazil. Environ. Technol. 2014, 35, 868–881. [Google Scholar] [CrossRef]
- Xing, J.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L.; Qu, B.; Wang, Q.; Kang, X. Chemical Characteristics, Deposition Fluxes and Source Apportionment of Precipitation Components in the Jiaozhou Bay, North China. Atmos. Res. 2017, 190, 10–20. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 2013, 453521. [Google Scholar] [CrossRef]
- Keresztesi, Á.; Nita, I.-A.; Boga, R.; Birsan, M.-V.; Bodor, Z.; Szép, R. Spatial and Long-Term Analysis of Rainwater Chemistry over the Conterminous United States. Environ. Res. 2020, 188, 109872. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Y.; Liu, W.-J.; Liang, C.-S.; Ji, J.; Zhao, T.; Zhang, X. Chemical Composition of Rainwater and the Acid Neutralizing Effect at Beijing and Chizhou City, China. Atmos. Res. 2015, 164, 278–285. [Google Scholar] [CrossRef]
- Li, C.; Li, S.-L.; Yue, F.-J.; He, S.-N.; Shi, Z.-B.; Di, C.-L.; Liu, C.-Q. Nitrate Sources and Formation of Rainwater Constrained by Dual Isotopes in Southeast Asia: Example from Singapore. Chemosphere 2020, 241, 125024. [Google Scholar] [CrossRef]
- Naimabadi, A.; Shirmardi, M.; Maleki, H.; Teymouri, P.; Goudarzi, G.; Shahsavani, A.; Sorooshian, A.; Babaei, A.A.; Mehrabi, N.; Baneshi, M.M.; et al. On the Chemical Nature of Precipitation in a Populated Middle Eastern Region (Ahvaz, Iran) with Diverse Sources. Ecotoxicol. Environ. Saf. 2018, 163, 558–566. [Google Scholar] [CrossRef]
- Marc, G.; Marietta, H.; Andreas, M.; Gian-Valentino, V. Dirty Diesel. Public Eye 2016, 355, i6726. [Google Scholar]
- Bahino, J.; Yoboué, V.; Galy-Lacaux, C.; Adon, M.; Akpo, A.; Keita, S.; Liousse, C.; Gardrat, E.; Chiron, C.; Ossohou, M.; et al. A Pilot Study of Gaseous Pollutants’ Measurement (NO2, SO2, NH3, HNO3 and O3) in Abidjan, Côte d’Ivoire: Contribution to an Overview of Gaseous Pollution in African Cities. Atmos. Chem. Phys. 2018, 18, 5173–5198. [Google Scholar] [CrossRef] [Green Version]
- Wai, K.M.; Tanner, P.A.; Tam, C.W.F. 2-Year Study of Chemical Composition of Bulk Deposition in a South China Coastal City: Comparison with East Asian Cities. Environ. Sci. Technol. 2005, 39, 6542–6547. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kulshrestha, U.C.; Padmanabhamurty, B. Monsoon Rain Chemistry and Source Apportionment Using Receptor Modeling in and around National Capital Region (NCR) of Delhi, India. Atmos. Environ. 2007, 41, 5595–5604. [Google Scholar] [CrossRef]
- Mimura, A.M.S.; Almeida, J.M.; Vaz, F.A.S.; de Oliveira, M.A.L.; Ferreira, C.C.M.; Silva, J.C.J. Chemical Composition Monitoring of Tropical Rainwater during an Atypical Dry Year. Atmos. Res. 2016, 169, 391–399. [Google Scholar] [CrossRef]
- Hoinaski, L.; Franco, D.; Stuetz, R.M.; Sivret, E.C.; de Melo Lisboa, H. Investigation of PM 10 Sources in Santa Catarina, Brazil through Graphical Interpretation Analysis Combined with Receptor Modelling. Environ. Technol. 2013, 34, 2453–2463. [Google Scholar] [CrossRef]
- Conceição, F.T.d.; Sardinha, D.d.S.; Navarro, G.R.B.; Antunes, M.L.P.; Angelucci, V.A. Composição Química Das Águas Pluviais e Deposição Atmosférica Anual Na Bacia Do Alto Sorocaba (SP). Quím. Nova 2011, 34, 610–616. [Google Scholar] [CrossRef]
- Migliavacca, D.; Teixeira, E.; Wiegand, F.; Machado, A.; Sanchez, J. Atmospheric Precipitation and Chemical Composition of an Urban Site, Guaíba Hydrographic Basin, Brazil. Atmos. Environ. 2005, 39, 1829–1844. [Google Scholar] [CrossRef]
- Migliavacca, D.M.; Teixeira, E.C.; Rodriguez, M.T.R. Composição Química Da Precipitação Úmida Da Região Metropolitana de Porto Alegre, Brasil, 2005-2007. Quím. Nova 2012, 35, 1075–1083. [Google Scholar] [CrossRef]
- Souza, P.A.; Mello, W.Z.; Maldonado, J.; Evangelista, H. Composição Química Da Chuva e Aporte Atmosférico Na Ilha Grande, RJ. Quím. Nova 2006, 29, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Fontenele, A.P.G.; Pedrotti, J.J.; Fornaro, A. Avaliação de Metais Traços e Íons Majoritários Em Águas de Chuva Na Cidade de São Paulo. Quím. Nova 2009, 32, 839–844. [Google Scholar] [CrossRef]
- Topçu, S.; Incecik, S.; Atimtay, A.T. Chemical Composition of Rainwater at EMEP Station in Ankara, Turkey. Atmos. Res. 2002, 65, 77–92. [Google Scholar] [CrossRef]
- Tsai, Y.I.; Hsieh, L.-Y.; Kuo, S.-C.; Chen, C.-L.; Wu, P.-L. Seasonal and Rainfall-Type Variations in Inorganic Ions and Dicarboxylic Acids and Acidity of Wet Deposition Samples Collected from Subtropical East Asia. Atmos. Environ. 2011, 45, 3535–3547. [Google Scholar] [CrossRef]
- Song, F.; Gao, Y. Chemical Characteristics of Precipitation at Metropolitan Newark in the US East Coast. Atmos. Environ. 2009, 43, 4903–4913. [Google Scholar] [CrossRef]
- Lara, L.B.L.S.; Artaxo, P.; Martinelli, L.A.; Victoria, R.L.; Camargo, P.B.; Krusche, A.; Ayers, G.P.; Ferraz, E.S.B.; Ballester, M.V. Chemical Composition of Rainwater and Anthropogenic Influences in the Piracicaba River Basin, Southeast Brazil. Atmos. Environ. 2001, 35, 4937–4945. [Google Scholar] [CrossRef]
- Andreae, M.O.; Andreae, T.W.; Annegarn, H.; Beer, J.; Cachier, H.; Le Canut, P.; Elbert, W.; Maenhaut, W.; Salma, I.; Wienhold, F.G.; et al. Airborne Studies of Aerosol Emissions from Savanna Fires in Southern Africa: 2. Aerosol Chemical Composition. J. Geophys. Res. Atmos. 1998, 103, 32119–32128. [Google Scholar] [CrossRef]
- de Mello, W.Z. Precipitation Chemistry in the Coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environ. Pollut. 2001, 114, 235–242. [Google Scholar] [CrossRef]
- Shakya, K.M.; Peltier, R.E.; Shrestha, H.; Byanju, R.M. Measurements of TSP, PM 10, PM 2.5, BC, and PM Chemical Composition from an Urban Residential Location in Nepal. Atmos. Pollut. Res. 2017, 8, 1123–1131. [Google Scholar] [CrossRef]
- Samara, C.; Tsitouridou, R. Fine and Coarse Ionic Aerosol Components in Relation to Wet and dry Deposition. Water. Air. Soil Pollut. 2000, 120, 71–88. [Google Scholar] [CrossRef]
- Khwaja, H.A.; Husain, L. Chemical Characterization of Acid Precipitation in Albany, New York. Atmos. Environ. Part Gen. Top. 1990, 24, 1869–1882. [Google Scholar] [CrossRef]
- Fernandes, A.M. Características Hidrogeoquímicas da Bacia de Drenagem do Rio Sorocaba, SP: Processos Erosivos Mecânicos e Químicos. Doutorado em Química na Agricultura e no Ambiente. Ph.D. Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2012. [Google Scholar]
- Kulshrestha, U.C.; Kulshrestha, M.J.; Sekar, R.; Sastry, G.S.R.; Vairamani, M. Chemical Characteristics of Rainwater at an Urban Site of South-Central India. Atmos. Environ. 2003, 37, 3019–3026. [Google Scholar] [CrossRef]
- Riccio, A.; Chianese, E.; Tirimberio, G.; Prati, M.V. Emission Factors of Inorganic Ions from Road Traffic: A Case Study from the City of Naples (Italy). Transp. Res. Part Transp. Environ. 2017, 54, 239–249. [Google Scholar] [CrossRef]
- Kaufman, Y.J. Dust Transport and Deposition Observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) Spacecraft over the Atlantic Ocean. J. Geophys. Res. 2005, 110, D10S12. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Chatenet, B.; Rajot, J.L.; Traoré, S.; Coulibaly, M.; Diallo, A.; Koné, I.; Maman, A.; NDiaye, T.; Zakou, A. Temporal Variability of Mineral Dust Concentrations over West Africa: Analyses of a Pluriannual Monitoring from the AMMA Sahelian Dust Transect. Atmos. Chem. Phys. 2010, 10, 8899–8915. [Google Scholar] [CrossRef] [Green Version]
- Avila, A.; Queralt-Mitjans, I.; Alarcón, M. Mineralogical Composition of African Dust Delivered by Red Rains over Northeastern Spain. J. Geophys. Res. Atmos. 1997, 102, 21977–21996. [Google Scholar] [CrossRef]
- Sigha-Nkamdjou, L.; Galy-Lacaux, C.; Pont, V.; Richard, S.; Sighomnou, D.; Lacaux, J.P. Rainwater Chemistry and Wet Deposition over the Equatorial Forested Ecosystem of Zoétélé (Cameroon). J. Atmos. Chem. 2003, 46, 173–198. [Google Scholar] [CrossRef]
- Tiwari, S.; Hopke, P.K.; Thimmaiah, D.; Dumka, U.C.; Srivastava, A.K.; Bisht, D.S.; Rao, P.S.P.; Chate, D.M.; Srivastava, M.K.; Tripathi, S.N. Nature and Sources of Ionic Species in Precipitation across the Indo-Gangetic Plains, India. Aerosol Air Qual. Res. 2016, 16, 943–957. [Google Scholar] [CrossRef] [Green Version]
- Ehrnsperger, L.; Klemm, O. Source Apportionment of Urban Ammonia and Its Contribution to Secondary Particle Formation in a Mid-Size European City. Aerosol Air Qual. Res. 2021, 21, 200404. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Hartley, A.E. A Global Budget for Atmospheric NH3. Biogeochemistry 1992, 15, 191–211. [Google Scholar] [CrossRef]
- N’goran, A.S. Agriculture Traditionnelle Et Échecs Des Politiques De Gestion Des Aires Protégées En Côte d’Ivoire: Le Cas De La Réserve De Lamto. Eur. Sci. J. ESJ 2016, 12, 209. [Google Scholar] [CrossRef]
- Delmas, R.; Lacaux, J.P.; Menaut, J.C.; Abbadie, L.; Le Roux, X.; Helas, G.; Lobert, J. Nitrogen Compound Emission from Biomass Burning in Tropical African Savanna FOS/DECAFE 1991 Experiment (Lamto, Ivory Coast). J. Atmos. Chem. 1995, 22, 175–193. [Google Scholar] [CrossRef]
- Seinfeld, J.H. Atmospheric Chemistry and Physics of Air Pollution. In A Wiley Interscience Publication; Wiley: New York, NY, USA, 1986; ISBN 978-0-471-82857-0. [Google Scholar]
- Zhang, M.; Wang, S.; Wu, F.; Yuan, X.; Zhang, Y. Chemical Compositions of Wet Precipitation and Anthropogenic Influences at a Developing Urban Site in Southeastern China. Atmos. Res. 2007, 84, 311–322. [Google Scholar] [CrossRef]
- Serça, D.; Delmas, R.; Le Roux, X.; Parsons, D.A.B.; Scholes, M.C.; Abbadie, L.; Lensi, R.; Ronce, O.; Labroue, L. Comparison of Nitrogen Monoxide Emissions from Several African Tropical Ecosystems and Influence of Season and Fire. Glob. Biogeochem. Cycles 1998, 12, 637–651. [Google Scholar] [CrossRef]
- Dentener, F.J.; Crutzen, P.J. A Three-Dimensional Model of the Global Ammonia Cycle. J. Atmos. Chem. 1994, 19, 331–369. [Google Scholar] [CrossRef]
- Adon, M.; Galy-Lacaux, C.; Yoboué, V.; Delon, C.; Lacaux, J.P.; Castera, P.; Gardrat, E.; Pienaar, J.; Al Ourabi, H.; Laouali, D.; et al. Long Term Measurements of Sulfur Dioxide, Nitrogen Dioxide, Ammonia, Nitric Acid and Ozone in Africa Using Passive Samplers. Atmos. Chem. Phys. 2010, 10, 7467–7487. [Google Scholar] [CrossRef] [Green Version]
- Rao, W.; Han, G.; Tan, H.; Jin, K.; Wang, S.; Chen, T. Chemical and Sr Isotopic Characteristics of Rainwater on the Alxa Desert Plateau, North China: Implication for Air Quality and Ion Sources. Atmos. Res. 2017, 193, 163–172. [Google Scholar] [CrossRef]
- Ossohou, M.; Galy-Lacaux, C.; Yoboué, V.; Adon, M.; Delon, C.; Gardrat, E.; Konaté, I.; Ki, A.; Zouzou, R. Long-Term Atmospheric Inorganic Nitrogen Deposition in West African Savanna over 16 Year Period (Lamto, Côte d’Ivoire). Environ. Res. Lett. 2020, 16, 015004. [Google Scholar] [CrossRef]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.; Dentener, F.; et al. Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [Green Version]
- Josipovic, M.; Annegarn, H.J.; Kneen, M.A.; Pienaar, J.J.; Piketh, S.J. Atmospheric Dry and Wet Deposition of Sulphur and Nitrogen Species and Assessment of Critical Loads of Acidic Deposition Exceedance in South Africa. S. Afr. J. Sci. 2011, 107, 10. [Google Scholar] [CrossRef]
- Nilsson, J. Critical Loads for Sulphur and Nitrogen. In Air Pollution and Ecosystems; Mathy, P., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 85–91. ISBN 978-94-010-8276-1. [Google Scholar]
- Bakayoko, A.; Galy-Lacaux, C.; Yoboué, V.; Hickman, J.E.; Roux, F.; Gardrat, E.; Julien, F.; Delon, C. Dominant Contribution of Nitrogen Compounds in Precipitation Chemistry in the Lake Victoria Catchment (East Africa). Environ. Res. Lett. 2021, 16, 045013. [Google Scholar] [CrossRef]
- Charlson, R.J.; Rodhe, H. Factors Controlling the Acidity of Natural Rainwater. Nature 1982, 295, 683–685. [Google Scholar] [CrossRef]
- Galloway, J.N.; Likens, G.E.; Keene, W.C.; Miller, J.M. The Composition of Precipitation in Remote Areas of the World. J. Geophys. Res. 1982, 87, 8771. [Google Scholar] [CrossRef]
- Drever, J.I. The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1997; ISBN 978-0-13-272790-7. [Google Scholar]
- Payus, C.M.; Jikilim, C.; Sentian, J. Rainwater Chemistry of Acid Precipitation Occurrences Due to Long-Range Transboundary Haze Pollution and Prolonged Drought Events during Southwest Monsoon Season: Climate Change Driven. Heliyon 2020, 6, e04997. [Google Scholar] [CrossRef] [PubMed]
- Mphepya, J.N.; Pienaar, J.J.; Galy-Lacaux, C.; Held, G.; Turner, C.R. Precipitation Chemistry in Semi-Arid Areas of Southern Africa: A Case Study of a Rural and an Industrial Site. J. Atmos. Chem. 2004, 47, 1–24. [Google Scholar] [CrossRef]
- Radojevic, M.; Harrison, R.M. Atmospheric Acidity: Sources, Consequences, and Abatement; Elsevier Applied Science: New York, NY, USA, 1992; ISBN 978-1-85166-777-2. [Google Scholar]
- Park, S.-M.; Seo, B.-K.; Lee, G.; Kahng, S.-H.; Jang, Y. Chemical Composition of Water Soluble Inorganic Species in Precipitation at Shihwa Basin, Korea. Atmosphere 2015, 6, 732–750. [Google Scholar] [CrossRef] [Green Version]
- Dominutti, P.; Keita, S.; Bahino, J.; Colomb, A.; Liousse, C.; Yoboué, V.; Galy-Lacaux, C.; Morris, E.; Bouvier, L.; Sauvage, S.; et al. Anthropogenic VOCs in Abidjan, Southern West Africa: From Source Quantification to Atmospheric Impacts. Atmos. Chem. Phys. 2019, 19, 11721–11741. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Li, X.; Pu, J.; Huang, Z. Organic Acids Contribute to Rainwater Acidity at a Rural Site in Eastern China. Air Qual. Atmos. Health 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Possanzini, M.; Buttini, P.; Di Palo, V. Characterization of a Rural Area in Terms of Dry and Wet Deposition. Sci. Total Environ. 1988, 74, 111–120. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Victor, T.; Chun, N. Chemical and Statistical Analysis of Precipitation in Singapore. Water. Air. Soil Pollut. 2001, 130, 451–456. [Google Scholar] [CrossRef]
- Chao, C.Y.; Wong, K.K. Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmospheric Environ. 2002, 36, 265–277. [Google Scholar] [CrossRef]
- Keene, W.C.; Galloway, J.N. Considerations regarding sources for formic and acetic acids in the troposphere. J. Geophys. Res. Atmos. 1986, 91, 14466. [Google Scholar] [CrossRef]
- Safai, P.; Rao, P.; Momin, G.; Ali, K.; Chate, D.; Praveen, P. Chemical composition of precipitation during 1984–2002 at Pune, India. Atmos. Environ. 2004, 38, 1705–1714. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Travi, Y.; Loÿe-Pilot, M.-D.; Huneau, F.; Bertrand, G. Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmos. Res. 2009, 91, 118–126. [Google Scholar] [CrossRef]
- Rastogi, N.; Sarin, M. Chemical characteristics of individual rain events from a semi-arid region in India: Three-year study. Atmos. Environ. 2005, 39, 3313–3323. [Google Scholar] [CrossRef]
- Lu, X.; Li, L.Y.; Li, N.; Yang, G.; Luo, D.; Chen, J. Chemical characteristics of spring rainwater of Xi’an city, NW China. Atmos. Environ. 2011, 45, 5058–5063. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An Active-Fire Based Burned Area Mapping Algorithm for the MODIS Sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Krotkov, N.A.; Celarier, E.A.; Swartz, W.H.; Pickering, K.E.; Bucsela, E.J.; Gleason, J.F.; Martin, R.V.; Philip, S.; Irie, H.; et al. Evaluation of OMI Operational Standard NO2 Column Retrievals Using in Situ and Surface-Based NO2 Observations. Atmos. Chem. Phys. 2014, 14, 11587–11609. [Google Scholar] [CrossRef] [Green Version]
Sites | Abidjan | Lamto | Korhogo | ||||||
---|---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 |
Pt (mm) | 1477.7 | 1355.4 | 1593.7 | 1090.9 | 1508.2 | 1101.4 | 1160.7 | 1162.5 | 1083 |
Interannual Variability (%) | −2.91 | −10.94 | 4.71 | −0.80 | 22.71 | −10.38 | −2.21 | −2.06 | −8.76 |
Pc (mm) (Nc) | 825 (56) | 1006.20 (81) | 1288.30 (84) | 1077.60 (91) | 1459.40 (70) | 988 (78) | 745.55 (48) | 862.80 (52) | 783.10 (43) |
%TP (%) | 56 | 74 | 81 | 99 | 97 | 90 | 64 | 74 | 72 |
Annual %PCL (%) (quarterly) | 75 (0,1,1,1) | 100 (1,1,1,1) | 100 (1,1,1,1) | 100 (1,1,1,1) | 100 (1,1,1,1) | 100 (1,1,1,1) | 75 (0,1,1,1) | 100 (1,1,1,1) | 100 (1,1,1,1) |
Sites | Period | n | pH | H+ | Ca2+ | Mg2+ | Na+ | K+ | NH4+ | HCO3− | Cl− | SO42− | NO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Limeira, Brazil (a) | 09/2013–03/2014 | 30 | 5.62 | 2.40 | 54.88 | 17.40 | 22.39 | 5.68 | 34.36 | 20.13 | 7.06 | 15.54 | 14.73 |
Jiaozhou Bay, China (b) | 06/2015–05/2016 | 49 | 4.77 | 16.90 | 64.10 | 21.90 | 54.7 | 17.20 | 107.00 | – | 66.00 | 93.70 | 62.90 |
Juiz de Fora, Brazil (c) | 2014 | 53 | 6.60 | 0.40 | 31.90 | 13.80 | 29.10 | 16.00 | – | 8.50 | 18.30 | 3.00 | 25.60 |
Lijiang City, China (d) | 06/2012–11/2012 | 176 | 6.07 | 0.85 | 50.10 | 10.90 | 0.98 | 2.01 | 20.80 | – | 2.04 | 23.70 | 7.00 |
Djougou, Benin (e) | 2006–2009 | 530 | 5.10 | 6.46 | 13.30 | 2.10 | 3.80 | 2.00 | 14.30 | – | 3.40 | 6.20 | 8.20 |
Florianópolis, Brazil (f) | 08/2006–11/2006 | 22 | 4.97 | 10.71 | 7.98 | 9.00 | 59.80 | 3.14 | – | – | 56.94 | 9.94 | 15.18 |
Ibiúna, Brazil (g) | 2006 | 15 | 6.23 | 0.59 | 114.00 | 10.10 | 37.70 | 8.25 | 56.70 | – | 21.20 | 60.90 | 21.80 |
Delhi, Índia (h) | 2003–2005 | 355 | 6.39 | 1.02 | 80.88 | 23.11 | 24.35 | 14.18 | 31.81 | 38.42 | 29.52 | 40.81 | 25.17 |
Porto Alegre, Brazil (i) | 2005–2007 | 177 | 5.30 | 4.98 | 22.40 | 9.28 | 18.40 | 6.48 | 35.30 | – | 16.10 | 22.10 | 3.95 |
Guaíba, Brazil (j) | 01/2002–12/2002 | 70 | 5.72 | 1.90 | 8.41 | 3.85 | 11.10 | 2.81 | 28.10 | – | 6.98 | 13.20 | 2.47 |
Ilha Grande, Brazil (k) | 03/2002–09/2002 | 20 | 5.22 | 6.00 | 9.20 | 40.40 | 142.20 | 7.10 | 9.90 | – | 178.20 | 34.80 | 12.00 |
São Paulo, Brazil (l) | 01/2003–12/2003 | 44 | 5.39 | 4.03 | 21.60 | 6.60 | 8.64 | 9.55 | 37.10 | – | 9.29 | 23.80 | 20.10 |
Ankara, Turkey (m) | 09/1994–12/1996 | 162 | 6.33 | 1.60 | 71.4 | 9.30 | 15.60 | 9.8 | 86.40 | 20.40 | 48.00 | 29.20 | |
SouthernTaiwan (n) | 05/2005–12/2008 | 402 | – | 53.40 | 32.60 | 97.10 | 10.90 | 50.20 | 119.60 | 63.10 | 40.50 | 15.70 | |
Newark, USA (o) | 2006–2007 | 46 | 4.60 | 25.0 | 6.00 | 3.30 | 10.90 | 1.30 | 24.40 | – | 10.70 | 38.10 | 14.40 |
Hong Kong, China (p) | 10/1998–10/2000 | 156 | 4.20 | 63.20 | 16.20 | 7.00 | 36.90 | 4.20 | 22.00 | – | 42.40 | 70 | 27.60 |
Abidjan, Côte d’Ivoire (*) | 2019–2020 | 165 | 5.76 | 3.90 | 25.00 | 5.80 | 21.50 | 3.60 | 19.01 | 5.00 | 24.30 | 19.50 | 8.70 |
Lamto, Côte d’Ivoire (*) | 2019–2020 | 146 | 5.31 | 6.57 | 9.91 | 2.57 | 5.41 | 2.00 | 17.90 | 1.50 | 5.57 | 4.76 | 7.22 |
Korogho, Côte d’Ivoire (*) | 2019–2020 | 97 | 5.57 | 4.09 | 20.09 | 3.40 | 11.24 | 8.63 | 17.38 | 2.30 | 9.57 | 5.27 | 9.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassamba-Diaby, M.L.; Galy-Lacaux, C.; Yoboué, V.; Hickman, J.E.; Mouchel-Vallon, C.; Jaars, K.; Gnamien, S.; Konan, R.; Gardrat, E.; Silué, S. The Chemical Characteristics of Rainwater and Wet Atmospheric Deposition Fluxes at Two Urban Sites and One Rural Site in Côte d’Ivoire. Atmosphere 2023, 14, 809. https://doi.org/10.3390/atmos14050809
Kassamba-Diaby ML, Galy-Lacaux C, Yoboué V, Hickman JE, Mouchel-Vallon C, Jaars K, Gnamien S, Konan R, Gardrat E, Silué S. The Chemical Characteristics of Rainwater and Wet Atmospheric Deposition Fluxes at Two Urban Sites and One Rural Site in Côte d’Ivoire. Atmosphere. 2023; 14(5):809. https://doi.org/10.3390/atmos14050809
Chicago/Turabian StyleKassamba-Diaby, Mohamed L., Corinne Galy-Lacaux, Véronique Yoboué, Jonathan E. Hickman, Camille Mouchel-Vallon, Kerneels Jaars, Sylvain Gnamien, Richmond Konan, Eric Gardrat, and Siélé Silué. 2023. "The Chemical Characteristics of Rainwater and Wet Atmospheric Deposition Fluxes at Two Urban Sites and One Rural Site in Côte d’Ivoire" Atmosphere 14, no. 5: 809. https://doi.org/10.3390/atmos14050809
APA StyleKassamba-Diaby, M. L., Galy-Lacaux, C., Yoboué, V., Hickman, J. E., Mouchel-Vallon, C., Jaars, K., Gnamien, S., Konan, R., Gardrat, E., & Silué, S. (2023). The Chemical Characteristics of Rainwater and Wet Atmospheric Deposition Fluxes at Two Urban Sites and One Rural Site in Côte d’Ivoire. Atmosphere, 14(5), 809. https://doi.org/10.3390/atmos14050809