Comprehensive Analysis and Greenhouse Gas Reduction Assessment of the First Large-Scale Biogas Generation Plant in West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- (1)
- Designing a questionnaire to be sent to the plant manager of the OUA biogas plant. The questionnaire covered aspects such as initial investment, operation and management, profit from by-products, and related costs of environmental management and treatment.
- (2)
- Reviewing the preparation and preliminary design phase of the OUA biogas plant between 2015 and 2017.
- (3)
- Collecting data on renewable energy sources in Africa, including biogas, from publicly available statistics. The parameters for GHG emission calculations were obtained from the IPCC, the Kyoto Protocol to the United Nations Framework Convention on Climatic Change (UNFCCC) [44] and on-site research conducted by the University of Science and Technology Beijing (USTB) and Chengdu Detong Environmental Engineering Co., Ltd. (Chengdu, China)
2.2. Study Subjects
2.2.1. Raw Material Pretreatment Systems
2.2.2. Hydrolysis and Acidification Process
2.2.3. Fermentation, Biogas Purification, and Desulfurization Technology
2.2.4. Combined Heat and Power Generation
2.3. GHG Emission Reduction Calculation
2.3.1. Open Anaerobic Pond Scenario in an Open Lagoon, the Baseline Discharge of Human Feces Is Calculated as Follows
2.3.2. Solid Waste Disposal Site
2.3.3. Plant Activity Emissions
3. Results and Discussion
3.1. GHG Potential Reduction
Variable | Description | Data (tCO2eq/Year) |
---|---|---|
BEHF | Baseline emission of human feces in the open lagoon scenario in year | 4541.63 |
BESWDS | Baseline emissions of seasonal mixing of solid waste in the SWDS scenario in year | 40.34 |
PEEC | Project activity emissions from electricity consumption in year | 118.27 a |
PECH4 | Project emissions of methane leakage in year | 1215.65 |
AGCH4 | GHG emission reductions from methane replacement of coal for power generation in year | 1984.56 |
BECH4 | Baseline scenario GHG emissions in year | 4581.97 |
PEOUA | Project activity emissions in year | −650.64 |
ERCH4 | GHG emission reduction from OUA biogas plant in year | 5232.61 |
Substrates | Type | Biogas Production (m3/Year) | Volumetric Biogas Production Rate (m3/(m3·d)) | GHG Emission Reduction (tCO2eq/Year) | Reference |
---|---|---|---|---|---|
Food waste | Pilot-scale | 3103 | 4.25 | 0.11 | Liu et al. [51] |
Cow dung | Family-scale | 355 | 0.48 | 1.40 | Haryanto et al. [52] |
Cow dung | Family-scale | 578 | 0.26 | 5.29 | Haryanto et al. [53] |
Kitchen waste and sludge | Industrial-scale | 862,313 | NR | 1554.9 | Guo et al. [49] |
Cow manure | Farm-scale | 2400 | 0.41 | 0.24 | Richards et al. [54] |
Pig manure and corn straw | Farm-scale | 20,415 | 1.22 | 303.08 | Wang et al. [55] |
Pig manure | Farm-scale | 116,800 | 0.40 | 1334.95 | Chen et al. [56] |
Pig manure | Farm-scale | 321,200 | 0.40 | 4016.95 | Chen et al. [56] |
Pig manure | Farm-scale | 657,000 | 0.82 | 5236.95 | Chen et al. [56] |
Straw | Farm-scale | 485,450 | 0.81 | 5582.03 | Wang et al. [57] |
Pig manure | Farm-scale | 6,570,000 | NR | 49,300 | Zhang et al. [58] |
Human feces | Industrial-scale | 58,000 | 0.40 | 69.2 | Zhang et al. [50] |
Human feces | Industrial-scale | 1,080,000 | 1.18 | 5232.61 | This study |
3.2. Benefits of the OUA Biogas Plant
3.2.1. Economic Benefits of the OUA Biogas Plant
3.2.2. Environmental and Social Benefits of the OUA Biogas Plant
4. Opportunities and Challenges
4.1. Main Opportunities for Biogas Project Development in Africa
4.1.1. Favorable Natural Conditions
4.1.2. Economic Development and Environmental Health Needs
4.1.3. Urbanization and Energy Needs
4.1.4. Domestic and International Support
4.2. Main Barriers to Biogas Project Development in Africa
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohsenizadeh, M.; Tural, M.K.; Kentel, E. Municipal solid waste management with cost minimization and emission control objectives: A case study of Ankara. Sustain. Cities Soc. 2020, 52, 101807. [Google Scholar] [CrossRef]
- Quesada, L.; Calero, M.; Martín-Lara, M.A.; Pérez, A.; Blázquez, G. Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste. Energy 2019, 186, 115874. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. Urbanization and Development: Emerging Futures (World Cities Report 2016). Available online: https://unhabitat.org/world-cities-report-2016 (accessed on 20 March 2023).
- Poma, P.; Usca, M.; Polanco, M.; Toulkeridis, T.; Mestanza-Ramón, C. Estimation of Biogas Generated in Two Landfills in South-Central Ecuador. Atmosphere 2021, 12, 1365. [Google Scholar] [CrossRef]
- Kapilakanchana, M.; McCarl, B.A. The Effect of Technological Progress, Demand, and Energy Policy on Agricultural and Bioenergy Markets. Atmosphere 2020, 11, 31. [Google Scholar] [CrossRef]
- Mkhwanazi, Z.; Isa, Y.M.; Vallabh, S.T. Production of Biocoal from Wastewater Sludge and Sugarcane Bagasse: A Review. Atmosphere 2023, 14, 184. [Google Scholar] [CrossRef]
- Imran, M.; Khan, S.; Zaman, K.; Khan, H.U.; Rashid, A. Assessing Green Solutions for Indoor and Outdoor Environmental Quality: Sustainable Development Needs Renewable Energy Technology. Atmosphere 2022, 13, 1904. [Google Scholar] [CrossRef]
- IRENA; IEA. Perspectives for the Energy Transition: Investment Needs for Low-Carbon Energy System. Available online: https://www.irena.org/publications/2017/Mar/Perspectives-for-the-energy-transition-Investment-needs-for-a-low-carbon-energy-system (accessed on 20 March 2023).
- Motevali, A.; Hooshmandzadeh, N.; Fayyazi, E.; Valipour, M.; Yue, J. Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering. Atmosphere 2023, 14, 399. [Google Scholar] [CrossRef]
- Chidiebere-Mark, N.M.; Onyeneke, R.U.; Uhuegbulem, I.J.; Ankrah, D.A.; Onyeneke, L.U.; Anukam, B.N.; Chijioke-Okere, M.O. Agricultural Production, Renewable Energy Consumption, Foreign Direct Investment, and Carbon Emissions: New Evidence from Africa. Atmosphere 2022, 13, 1981. [Google Scholar] [CrossRef]
- Erraji, H.; Asehraou, A.; Tallou, A.; Rokni, Y. Assessment of biogas production and fertilizer properties of digestate from cow dung using household biogas digester. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- IEA. Africa Energy Outlook 2019. Available online: https://www.iea.org/reports/africa-energy-outlook-2019 (accessed on 20 March 2023).
- IRENA. The UMEME Framework for NDC Implementation: Advancing Renewable Energy in Africa Together with National Climate Plans. Available online: https://www.irena.org/publications/2016/Nov/The-UMEME-Framework-for-NDC-Implementation-Advancing-renewable-energy-in-Africa-together-with-nation (accessed on 20 March 2023).
- Barasa, M.; Bogdanov, D.; Oyewo, A.S.; Breyer, C. A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030. Renew. Sustain. Energy Rev. 2018, 92, 440–457. [Google Scholar] [CrossRef]
- Adulugba, C. Sustainable Energy Transition in Sub-Saharan Africa. In Energy and Environmental Security in Developing Countries; Asif, M., Ed.; Advanced Sciences and Technologies for Security Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 199–226. ISBN 978-193-030-63654-63658. [Google Scholar]
- Zhou, K.; Wang, Y.; Hussain, J. Energy poverty assessment in the Belt and Road Initiative countries: Based on entropy weight-TOPSIS approach. Energy Effic. 2022, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- IEA. Technology Roadmap—Delivering Sustainable Bioenergy. Available online: https://www.iea.org/reports/technology-roadmap-delivering-sustainable-bioenergy (accessed on 20 March 2023).
- IRENA. Biomass Potential in Africa. Available online: https://www.irena.org/publications/2013/Aug/Biomass-Potential-in-Africa (accessed on 20 March 2023).
- Roopnarain, A.; Adeleke, R. Current status, hurdles and future prospects of biogas digestion technology in Africa. Renew. Sustain. Energy Rev. 2017, 67, 1162–1179. [Google Scholar] [CrossRef]
- Smeets, E.; Johnson, F.X.; Ballard-Tremeer, G. Keynote Introduction: Traditional and Improved Use of Biomass for Energy in Africa. In Bioenergy for Sustainable Development in Africa; Janssen, R., Rutz, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–12. ISBN 978-994-007-2181-2184. [Google Scholar]
- Mutezo, G.; Mulopo, J. A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renew. Sustain. Energy Rev. 2021, 137, 110609. [Google Scholar] [CrossRef]
- Zulu, L.C.; Richardson, R.B. Charcoal, livelihoods, and poverty reduction: Evidence from sub-Saharan Africa. Energy Sustain. Dev. 2013, 17, 127–137. [Google Scholar] [CrossRef]
- Almsatar, T. Environmental Issues of Biomass-Burning in Sub-Saharan African Countries. In Biomass Burning in Sub-Saharan Africa: Chemical Issues and Action Outreach; Mammino, L., Ed.; Springer: Dordrecht, The Netherlands, 2020; pp. 1–14. ISBN 978-994-007-0808-0802. [Google Scholar]
- Li, L.; Yang, A.; He, X.; Liu, J.; Ma, Y.; Niu, J.; Luo, B. Indoor air pollution from solid fuels and hypertension: A systematic review and meta-analysis. Environ. Pollut. 2020, 259, 113914. [Google Scholar] [CrossRef]
- Sidibe, A.; Sakamoto, Y.; Murano, K.; Sato, K.; Yuba, A.; Futami, M.; Koita, O.A.; Traore, I.; Kajii, Y. Chemical Characterization and Health Risk Assessment of Particulate Matter from Household Activities in Bamako, Mali, Western Sub-Saharan Africa. Atmosphere 2022, 13, 1290. [Google Scholar] [CrossRef]
- WHO. Preventing Noncommunicable Diseases (NCDs) by Reducing Environmental Risk Factors. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/258796/WHO-FWC-EPE-17.01-eng.pdf;jsessionid=1D65EA3E48CFF14CEEB9DE2DFE1A0AC8?sequence=1 (accessed on 20 March 2023).
- Fisher, S.; Bellinger, D.C.; Cropper, M.L.; Kumar, P.; Binagwaho, A.; Koudenoukpo, J.B.; Park, Y.; Taghian, G.; Landrigan, P.J. Air pollution and development in Africa: Impacts on health, the economy, and human capital. Lancet Planet. Health 2021, 5, e681–e688. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A.O.; Awodumi, O.B. Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
- UNICEF; WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017. Special Focus on Inequalities. Available online: https://data.unicef.org/resources/progress-drinking-water-sanitation-hygiene-2019/ (accessed on 20 March 2023).
- Yan, P.; Xiao, C.; Xu, L.; Yu, G.; Li, A.; Piao, S.; He, N. Biomass energy in China’s terrestrial ecosystems: Insights into the nation’s sustainable energy supply. Renew. Sustain. Energy Rev. 2020, 127, 109857. [Google Scholar] [CrossRef]
- Sharmin, S.; Yabar, H.; Richards, D. Green Energy Optimization in Dinajpur, Bangladesh: A Path to Net Neutrality. Sustainability 2023, 15, 1336. [Google Scholar] [CrossRef]
- Bumharter, C.; Bolonio, D.; Amez, I.; García Martínez, M.J.; Ortega, M.F. New opportunities for the European Biogas industry: A review on current installation development, production potentials and yield improvements for manure and agricultural waste mixtures. J. Clean. Prod. 2023, 388, 135867. [Google Scholar] [CrossRef]
- Winquist, E.; Van Galen, M.; Zielonka, S.; Rikkonen, P.; Oudendag, D.; Zhou, L.; Greijdanus, A. Expert views on the future development of biogas business branch in Germany, The Netherlands, and Finland until 2030. Sustainability 2021, 13, 1148. [Google Scholar] [CrossRef]
- Herrmann, A. Biogas Production from Maize: Current State, Challenges and Prospects. 2. Agronomic and Environmental Aspects. BioEnergy Res. 2013, 6, 372–387. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A.; Banaszuk, P. Importance of Feedstock in a Small-Scale Agricultural Biogas Plant. Energies 2022, 15, 7749. [Google Scholar] [CrossRef]
- Tagne, R.F.T.; Dong, X.; Anagho, S.G.; Kaiser, S.; Ulgiati, S. Technologies, challenges and perspectives of biogas production within an agricultural context. The case of China and Africa. Environ. Dev. Sustain. 2021, 23, 14799–14826. [Google Scholar] [CrossRef]
- Lu, J.; Gao, X. Biogas: Potential, challenges, and perspectives in a changing China. Biomass Bioenergy 2021, 150, 106127. [Google Scholar] [CrossRef]
- Jain, S. Global Potential of Biogas. Available online: https://www.worldbiogasassociation.org/wp-content/uploads/2019/09/WBA-globalreport-56ppa4_digital-Sept-2019.pdf (accessed on 20 March 2023).
- Ali, M.M.; Ndongo, M.; Bilal, B.; Yetilmezsoy, K.; Youm, I.; Bahramian, M. Mapping of biogas production potential from livestock manures and slaughterhouse waste: A case study for African countries. J. Clean. Prod. 2020, 256, 120499. [Google Scholar] [CrossRef]
- Tumwesige, V.; Fulford, D.; Davidson, G.C. Biogas appliances in Sub-Sahara Africa. Biomass Bioenergy 2014, 70, 40–50. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Statistics 2022. Available online: https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022 (accessed on 20 March 2023).
- UNFCCC. Clean Development Mechanism, AMS-III. D, Small-scale Methodology: Methane Recovery in Animal Manure Management Systems: Version 02.0. Available online: https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-14-v2.pdf (accessed on 24 April 2023).
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 18 April 2023).
- UNFCCC. Kyoto Protocol to The United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed on 20 March 2023).
- Esposito, G.; Frunzo, L.; Giordano, A.; Liotta, F.; Panico, A.; Pirozzi, F. Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Bio/Technol. 2012, 11, 325–341. [Google Scholar] [CrossRef]
- Li, Y.E.; Dong, H.M.; Wan, Y.F.; Qin, X.B.; Gao, Q.Z. Emission Reduction and Financial Analysis of Intensive Swine Farm Using Biogas Digester to Treat Manure and Developed as a CDM Projects. J. Agro-Environ. Sci. 2009, 28, 2580–2583. (In Chinese) [Google Scholar]
- Lerebours, A.; Scott, R.; Sansom, K.; Kayaga, S. Regulating sanitation services in sub-saharan africa: An overview of the regulation of emptying and transport of faecal sludge in 20 cities and its implementation. Util. Policy 2021, 73, 101315. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Guo, Q.; Dai, X. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example. Waste Manag. 2017, 69, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Duojiao, Z.; Na, D.; Cong, L.; Yilin, Z.; Jiyang, L. Study On the Human Manure Biogas Project in CuiGezhuang Village of Chaoyang District. China Biogas 2015, 33, 87–90. [Google Scholar]
- Liu, X.; Gao, X.; Wang, W.; Zheng, L.; Zhou, Y.; Sun, Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy 2012, 44, 463–468. [Google Scholar] [CrossRef]
- Haryanto, A.; Cahyani, D. Greenhouse gas emission of household plastic biogas digester using life cycle assessment approach. IOP Conf. Ser. Earth Environ. Sci. 2019, 258, 012015. [Google Scholar] [CrossRef]
- Haryanto, A.; Cahyani, D.; Triyono, S.; Murdapa, F.; Haryono, D. Economic benefit and greenhouse gas emission reduction potential of a family-scale cowdung anaerobic biogas digester. Int. J. Renew. Energy Dev. 2017, 6, 29–36. [Google Scholar] [CrossRef]
- Richards, D.; Yabar, H. Promoting energy and resource recovery from livestock waste: Case study Yuge Farm, Japan. Case Stud. Chem. Environ. Eng. 2023, 7, 100299. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Cheng, S.; Ji, H.; Shi, J.; Yang, H. Multiple Substrates Anaerobic Co-Digestion: A Farm-Scale Biogas Project and the GHG Emission Reduction Assessment. Waste Biomass Valorization 2021, 12, 2049–2057. [Google Scholar] [CrossRef]
- Tinggui, C.; Zicheng, Z. Benefit on emission reduction of greenhouse gas in biogas digester on scale swine farm based on clean development mechanism. Trans. Chin. Soc. Agric. Eng. 2018, 34, 210–215. (In Chinese) [Google Scholar]
- Wang, L.; Gao, C.; Bi, Y.; Wang, Y.; Wang, H.; Sun, N.; Yu, J. Greenhouse gas emission mitigation calculation of large scale straw biogas centralized supply project. Trans. Chin. Soc. Agric. Eng. 2017, 33, 223–228. (In Chinese) [Google Scholar]
- Zhang, C.; Xu, Y. Economic analysis of large-scale farm biogas power generation system considering environmental benefits based on LCA: A case study in China. J. Clean. Prod. 2020, 258, 120985. [Google Scholar] [CrossRef]
- Hope, K.R. Climate Change in the Context of Urban Development in Africa. In Climate Change and Sustainable Urban Development in Africa and Asia; Yuen, B., Kumssa, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 37–55. [Google Scholar]
- The World Bank. Forest Area (% of Land Area). Available online: https://data.worldbank.org/indicator/AG.LND.FRST.ZS?locations=ZG&view=map (accessed on 5 May 2023).
- Dasappa, S. Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy Sustain. Dev. 2011, 15, 203–213. [Google Scholar] [CrossRef]
- Mensah, T.N.O.; Oyewo, A.S.; Breyer, C. The role of biomass in sub-Saharan Africa’s fully renewable power sector—The case of Ghana. Renew. Energy 2021, 173, 297–317. [Google Scholar] [CrossRef]
- Nations, Uations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 20 March 2023).
- Wang, J.; Zhang, R. An Empirical Analysis of Power Consumption and Economic Growth in the Industrial Capacity of “the Belt and Road” ——Based on Panel Data of 23 African countries. Econ. Forum 2021, 88–95. (In Chinese) [Google Scholar]
- IEA.; IRENA.; UNSD; The World Bank; WHO. Tracking SDG 7: The Energy Progress Report. Available online: https://www.irena.org//media/Files/IRENA/Agency/Publication/2021/Jun/SDG7_Tracking_Progress_2021.pdf?rev=06714fa68ab048af911765eee25b449b (accessed on 18 April 2023).
- Zhang, R.; Zhang, Y. Electricity Supply in Sub—Saharan Africa: Progress, Problems and Prospects. China-Afr. Stud. 2021, 2, 134–153. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XZ3C2DxwxPgWzzMwkSXXsbsN48Jpc3Wamoyg707hKeL4&uniplatform=NZKPT (accessed on 20 March 2023).
- Ali, M. Urbanisation and energy consumption in Sub-Saharan Africa. Electr. J. 2021, 34, 107045. [Google Scholar] [CrossRef]
- Hussain, M.N.; Li, Z.; Yang, S. Heterogeneous effects of urbanization and environment Kuznets curve hypothesis in Africa. Nat. Resour. Forum 2023, 47, 317–333. [Google Scholar] [CrossRef]
- Katoto, P.D.M.C.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswami, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 2019, 173, 174–188. [Google Scholar] [CrossRef]
- Apergis, N.; Ben Jebli, M.; Ben Youssef, S. Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries. Renew. Energy 2018, 127, 1011–1016. [Google Scholar] [CrossRef]
- Njoh, A.J.; Ananga, E.; Ngyah-Etchutambe, I.B.; Ricker, F.; Madosingh-Hector, R.; Rizutto, V.; Fisseha, S.; Akiwumi, F.A. The relationship between electricity consumption and improvement in women’s welfare in Africa. Women’s Stud. Int. Forum 2022, 90, 102541. [Google Scholar] [CrossRef]
- Subedi, M.; Matthews, R.B.; Pogson, M.; Abegaz, A.; Balana, B.B.; Oyesiku-Blakemore, J.; Smith, J. Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy 2014, 70, 87–98. [Google Scholar] [CrossRef]
- Maman Ali, M.M.; Yu, Q. Assessment of the impact of renewable energy policy on sustainable energy for all in West Africa. Renew. Energy 2021, 180, 544–551. [Google Scholar] [CrossRef]
- The World Bank. Annual Report 2021: From Crisis To Green, Resilient, And Inclusive Recovery. Available online: https://www.worldbank.org/en/about/annual-report (accessed on 20 March 2023).
- Dumont, K.B.; Hildebrandt, D.; Sempuga, B.C. The “yuck factor” of biogas technology: Naturalness concerns, social acceptance and community dynamics in South Africa. Energy Res. Soc. Sci. 2021, 71, 101846. [Google Scholar] [CrossRef]
- Ouedraogo, N.S. Opportunities, Barriers and Issues with Renewable Energy Development in Africa: A Comprehensible Review. Curr. Sustain. /Renew. Energy Rep. 2019, 6, 52–60. [Google Scholar] [CrossRef]
- Du, J.; Chang, G.; Adu, D.; Abbey, A.; Darko, R. Development of solar and bioenergy technology in Africa for green development—Addressing barriers and untapped potential. Energy Rep. 2021, 7, 506–518. [Google Scholar] [CrossRef]
- Todd, I.; McCauley, D. Assessing policy barriers to the energy transition in South Africa. Energy Policy 2021, 158, 112529. [Google Scholar] [CrossRef]
- Mungai, E.M.; Ndiritu, S.W.; Da Silva, I. Unlocking climate finance potential and policy barriers—A case of renewable energy and energy efficiency in Sub-Saharan Africa. Resour. Environ. Sustain. 2021, 100043. [Google Scholar] [CrossRef]
- Adelaja, A.O. Barriers to national renewable energy policy adoption: Insights from a case study of Nigeria. Energy Strategy Rev. 2020, 30, 100519. [Google Scholar] [CrossRef]
- Whitley, S.; van der Burg, L. Fossil Fuel Subsidy Reform in Sub-Saharan Africa: From Rhetoric to Reality. Available online: http://newclimateeconomy.report/2015/wp-content/uploads/sites/3/2015/11/FFS-Reform-in-Africa_NCE-ODI_final.pdf (accessed on 20 March 2023).
- Mulinda, C.; Hu, Q.; Pan, K. Dissemination and Problems of African Biogas Technology. Energy Power Eng. 2013, 5, 506–512. [Google Scholar] [CrossRef]
- Clemens, H.; Bailis, R.; Nyambane, A.; Ndung’u, V. Africa Biogas Partnership Program: A review of clean cooking implementation through market development in East Africa. Energy Sustain. Dev. 2018, 46, 23–31. [Google Scholar] [CrossRef]
- Mang, H.-P. Feasibility Study for a National Domestic Biogas Programme in Burkina Faso. Available online: https://www.susana.org/_resources/documents/default/2-492-huba-et-al-2007-feasibility-study-biogas-for-life-burkina-faso-en.pdf (accessed on 23 April 2023).
- Stürmer, B. Feedstock change at biogas plants—Impact on production costs. Biomass Bioenergy 2017, 98, 228–235. [Google Scholar] [CrossRef]
- Osei-Marfo, M.; de Vries, N.K.; Awuah, E. People’s perceptions on the use of human excreta for biogas generation in Ghana. Environ. Dev. Sustain. 2022, 24, 352–376. [Google Scholar] [CrossRef]
- Rupf, G.V.; Bahri, P.A.; de Boer, K.; McHenry, M.P. Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal. Renew. Sustain. Energy Rev. 2015, 52, 468–476. [Google Scholar] [CrossRef]
- Mwirigi, J.; Balana, B.B.; Mugisha, J.; Walekhwa, P.; Melamu, R.; Nakami, S.; Makenzi, P. Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: A review. Biomass Bioenergy 2014, 70, 17–25. [Google Scholar] [CrossRef]
- Nhamo, G.; Nhamo, S.; Nhemachena, C.; Nhemachena, C.R. Africa and the 2030 Sustainable Energy Goal: A Focus on Access to Renewables and Clean Fuels for Cooking. In Scaling up SDGs Implementation: Emerging Cases from State, Development and Private Sectors; Nhamo, G., Odularu, G.O.A., Mjimba, V., Eds.; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2020; pp. 39–57. ISBN 978-973-030-33216-33217. [Google Scholar]
Nr. | Structure | Amount | Parameter |
---|---|---|---|
1 | Sedimentation pound | 1 | 600 m3 |
2 | Acidification tank | 1 | 300 m3 |
3 | Pasteurization tank | 1 | 100 m3 |
4 | Adjustment pound | 1 | 45 m3 |
5 | CSTR tank | 1 | 2500 m3 |
6 | Lagoon | 1 | 1300 m3 |
7 | Buffer tank | 1 | 100 m3 |
8 | Gasholder | 1 | 1500 m3 |
9 | CHP units | 2 | 1.1 MW |
10 | Solid separator | 1 | 45 m3/h |
11 | Torch | 1 | 150 m3/h |
Nr. | Item | Investment (104 $) | Percentage |
---|---|---|---|
1 | Manure collection system | 4 | 0.90 |
2 | Manure pretreatment system | 10 | 2.25 |
3 | Anaerobic digestion system | 100 | 22.55 |
4 | Biogas utilization system | 100 | 22.55 |
5 | Solid manure/biogas residue (producing organic fertilizer)system | 45 | 10.15 |
6 | Subsidiary facilities | 80 | 18.04 |
7 | Land use costs | 3 | 0.68 |
8 | Public facilities (fire control, roads, landscaping, etc.) | 1.5 | 0.34 |
9 | Power supply system | 40 | 9.02 |
10 | Other costs (design fee and contingency fee) | 60 | 13.53 |
Total | 443.5 | 100 |
Nr. | Item | Running Cost (104 USD) | Percentage |
---|---|---|---|
1 | Maintenance costs | 2 | 22.22 |
2 | Labor costs | 3 | 33.33 |
3 | Management expenses | 1 | 11.11 |
4 | Energy consumption costs | 1.5 | 16.67 |
5 | Materials (accessories) costs | 1 | 11.11 |
6 | Other costs | 0.5 | 5.56 |
Total | 9 | 100 |
Type | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|---|---|---|
Installed Capacity (MW) | Liquid Biofuels | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Biogas | NR | NR | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |
Electricity Generation(GWh) | Liquid Biofuels | 0.05 | 0.15 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Biogas | NR | NR | NR | NR | 1.00 | 1.00 | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xu, Q.; Cheng, S.; Wu, T.; Boitin, T.; Lohani, S.P.; Mang, H.-P.; Li, Z.; Wang, X. Comprehensive Analysis and Greenhouse Gas Reduction Assessment of the First Large-Scale Biogas Generation Plant in West Africa. Atmosphere 2023, 14, 876. https://doi.org/10.3390/atmos14050876
Chen H, Xu Q, Cheng S, Wu T, Boitin T, Lohani SP, Mang H-P, Li Z, Wang X. Comprehensive Analysis and Greenhouse Gas Reduction Assessment of the First Large-Scale Biogas Generation Plant in West Africa. Atmosphere. 2023; 14(5):876. https://doi.org/10.3390/atmos14050876
Chicago/Turabian StyleChen, Haoran, Qian Xu, Shikun Cheng, Ting Wu, Tong Boitin, Sunil Prasad Lohani, Heinz-Peter Mang, Zifu Li, and Xuemei Wang. 2023. "Comprehensive Analysis and Greenhouse Gas Reduction Assessment of the First Large-Scale Biogas Generation Plant in West Africa" Atmosphere 14, no. 5: 876. https://doi.org/10.3390/atmos14050876
APA StyleChen, H., Xu, Q., Cheng, S., Wu, T., Boitin, T., Lohani, S. P., Mang, H. -P., Li, Z., & Wang, X. (2023). Comprehensive Analysis and Greenhouse Gas Reduction Assessment of the First Large-Scale Biogas Generation Plant in West Africa. Atmosphere, 14(5), 876. https://doi.org/10.3390/atmos14050876