Future Ship Emission Scenarios with a Focus on Ammonia Fuel
Abstract
:1. Introduction
2. Methodology
2.1. Reference Emission Inventory
2.2. Scenario Generation
3. Discussion of Resulting Scenario Emission Inventories
3.1. CO2 Emissions
3.2. Methane Emissions
3.3. N2O Emissions
3.4. CO2 Equivalent Emissions
3.5. NOX Emissions
3.6. Particulate Matter and SO2 Emissions
3.7. CO and NMVOC Emissions
3.8. Ammonia Emissions
4. Concluding Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIS | Automatic Identification System |
BC | Black Carbon |
BSH | German Federal Maritime and Hydrographic Agency |
CO2eq | Carbon Dioxide Equivalents |
COP26 | 26th United Nations Climate Change Conference of the Parties |
DF | Distillate Fuel |
DNV-GL | Det Norkse Veritas-Germanischer Lloyd |
EEDI | Energy Efficiency Design Index |
EF | Emission Factor |
EGR | Exhaust Gas Recirculation |
EI | Emission Inventory |
EMSA | European Maritime Safety Agency |
GHG | Greenhouse Gas |
GWP | Global Warming Potential |
IHS | Information Handling Services |
IMO | International Maritime Organization |
LNG | Liquiefied Natural Gas |
MA | Mineral Ash |
MARPOL | International Convention for the Prevention of Pollution from Ships |
MeOH | Methanol |
MEPC | Marine Environmental Protection Committee |
MGO | Marine Gas Oil |
MoSES | Modular Ship Emission modeling System |
NECA | Nitrogen Emission Control Area |
NMVOC | Non-methan Volatile Organic Compounds |
Nitrogen Oxide | |
PM | Particulate Matter |
POA | Primary Organic Aerosols |
SCR | Selective Catalytic Reduction |
SECA | Sulfur Emission Control Area |
SI | Spark Ignition |
Sulfur Oxide | |
UNCTAD | United Nations Conference on Trade and Development |
Appendix A. Emission Factors
Emission Species | NH3 Unc. | NH3 Con. | LNG | MeOH | DF | RF |
---|---|---|---|---|---|---|
0 | 0 | a | a | ; , , b | ||
0 | 0 | Main: , Aux: a | c | a | a | |
d | 0 | a | c | – b,e | a | |
110 d | 0 | a | a | a | a | |
0 | 0 | 0 | 0 | f | ||
d | d | a | a | – b,e | – b,e | |
d | d | 0 | 0 | 0 | 0 | |
10 d | 3 a,g | a | c | IMO Tier III limits h | ||
0 | 0 | a | – b,d | – d,i | ||
0 | 0 | 0 | 0 | ; if : , else: a | ||
d | 0 | a | a | f | ||
j | 0 | 0 | 0 | ; , f |
References
- UNCTAD. Review of Maritime Transport 2019; Technical Report; United Nations Conference on Trade and Development, United Nations Publications: New York, NY, USA, 2020; p. 89. [Google Scholar]
- Fridell, E. Emissions and Fuel Use in the Shipping Sector; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 19–33. [Google Scholar] [CrossRef]
- IMO. Fourth IMO GHG Study; Technical Report; International Maritime Organization: London, UK, 2021. [Google Scholar]
- IMO MEPC. Initial IMO Strategy on Reduction of GHG Emission from Ships. Resolution MEPC.304(72) (Adopted on 13 April 2018); Technical Report April; International Maritime Organization: London, UK, 2018. [Google Scholar]
- IMO. MEPC.203(62); Technical Report July; International Maritime Organization: London, UK, 2011. [Google Scholar]
- ITF/OECD. Decarbonising Maritime Transport. Pathways to Zero-Carbon Shipping by 2035; Technical Report; International Transport Forum, OECD Publishing: Paris, France, 2018. [Google Scholar]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Shih, Y.C.; Tzeng, Y.A.; Cheng, C.W.; Huang, C.H. Speed and Fuel Ratio Optimization for a Dual-Fuel Ship to Minimize Its Carbon Emissions and Cost. J. Mar. Sci. Eng. 2023, 11, 758. [Google Scholar] [CrossRef]
- Wang, X.T.; Liu, H.; Lv, Z.F.; Deng, F.Y.; Xu, H.L.; Qi, L.J.; Shi, M.S.; Zhao, J.C.; Zheng, S.X.; Man, H.Y.; et al. Trade-linked shipping CO2 emissions. Nat. Clim. Chang. 2021, 11, 945–951. [Google Scholar] [CrossRef]
- Hansson, J.; Brynolf, S.; Fridell, E.; Lehtveer, M. The potential role of ammonia as marine fuel-based on energy systems modeling and multi-criteria decision analysis. Sustainability 2020, 12, 3265. [Google Scholar] [CrossRef]
- Cheliotis, M.; Boulougouris, E.; Trivyza, N.L.; Theotokatos, G.; Livanos, G.; Mantalos, G.; Stubos, A.; Stamatakis, E.; Venetsanos, A. Review on the safe use of ammonia fuel cells in the maritime industry. Energies 2021, 14, 3023. [Google Scholar] [CrossRef]
- Dolan, R.H.; Anderson, J.E.; Wallington, T.J. Outlook for ammonia as a sustainable transportation fuel. Sustain. Energy Fuels 2021, 5, 4830–4841. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Q.; Liu, L.; Wu, Y.; Liu, H.; Gu, Z.; Zhu, C. A review of low and zero carbon fuel technologies: Achieving ship carbon reduction targets. Sustain. Energy Technol. Assess. 2022, 54, 102762. [Google Scholar] [CrossRef]
- Perčić, M.; Vladimir, N.; Jovanović, I.; Koričan, M. Application of fuel cells with zero-carbon fuels in short-sea shipping. Appl. Energy 2022, 309, 118463. [Google Scholar] [CrossRef]
- Schwarzkopf, D.A.; Petrik, R.; Matthias, V.; Quante, M.; Majamäki, E.; Jalkanen, J.P. A ship emission modeling system with scenario capabilities. Atmos. Environ. X 2021, 12, 100132. [Google Scholar] [CrossRef]
- DNV-GL. Maritime Forecast to 2050, 2020th ed.; Technical Report; DNV-GL—Maritime: Bærum, Norway, 2020. [Google Scholar]
- Jalkanen, J.P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef]
- Jalkanen, J.P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 2012, 12, 2641–2659. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.p.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Winnes, H.; Fridell, E.; Yaramenka, K.; Nelissen, D.; Faber, J.; Ahdour, S. NOx Controls for Shipping in EU Seas; Technical Report June; Transport & Environment, IVL: Stockholm, Sweden, 2016. [Google Scholar]
- IMO MEPC. Resolution MEPC.177(58); Technical Report; International Maritime Organization: London, UK, 2008. [Google Scholar]
- IMO MEPC. RESOLUTION MEPC.251(66); Technical Report; International Maritime Organization: London, UK, 2014. [Google Scholar]
- Fridell, E.; Parsmo, R.; Boteler, B.; Troeltzsch, J.; Kowalczyk, U.; Piotrowicz, J.; Jalkanen, J.P.; Johansson, L.; Matthias, V.; Ytreberg, E. Sustainable Shipping and Environment of the Baltic Sea Region (SHEBA) Deliverable 1.4, Type RE; Technical Report; IVL: Stockholm, Sweden, 2016; Available online: https://www.sheba-project.eu/imperia/md/content/sheba/deliverables/sheba_d1.4_final.pdf (accessed on 17 February 2023).
- Ushakov, S.; Stenersen, D.; Einang, P.M. Methane slip from gas fuelled ships: A comprehensive summary based on measurement data. J. Mar. Sci. Technol. 2019, 24, 1308–1325. [Google Scholar] [CrossRef]
- Yousefi, A.; Guo, H.; Dev, S.; Lafrance, S.; Liko, B. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine. Fuel 2022, 316, 123412. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Gao, Y.; Xia, C.; Zhu, Y.; Shreka, M.; Ming, P. Numerical simulation of lean premixed combustion characteristics and emissions of natural gas-ammonia dual-fuel marine engine with the pre-chamber ignition system. Fuel 2023, 343, 127990. [Google Scholar] [CrossRef]
- Westlye, F.R.; Ivarsson, A.; Schramm, J. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine. Fuel 2013, 111, 239–247. [Google Scholar] [CrossRef]
- Kalli, J.; Jalkanen, J.P.; Johansson, L.; Repka, S. Atmospheric emissions of European SECA shipping: Long-term projections. WMU J. Marit. Aff. 2013, 12, 129–145. [Google Scholar] [CrossRef]
- de Vries, N. Safe and Effective Application of Ammonia as a Marine Fuel. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.; Haywood, J.; Lean, J.; Lowe, D.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing; Technical Report; IPCC: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- EU Statement. Launch by United States, the European Union, and Partners of the Global Methane Pledge to Keep 1.5 °C within Reach. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/statement_21_5766 (accessed on 27 April 2022).
- MEPC, I. Resolution MEPC.75(40) Protocol to the MARPOL Convention with Added Annex VI; Technical Report; International Maritime Organization: London, UK, 1997. [Google Scholar]
- IMO MEPC. MEPC 70/INF.34; Technical Report; International Maritime Organization: London, UK, 2016. [Google Scholar]
- Mounaïm-Rousselle, C.; Brequigny, P. Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow’s Passenger Cars. Front. Mech. Eng. 2020, 6, 70. [Google Scholar] [CrossRef]
- Umweltbundesamt (German Environment Agency). Ammoniak-Emissionen (Ammonia Emissions). 2020. Available online: https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen#entwicklung-seit-1990 (accessed on 16 February 2022).
- Asman, W.A.; Sutton, M.A.; Schjørring, J.K. Ammonia: Emission, atmospheric transport and deposition. New Phytol. 1998, 139, 27–48. [Google Scholar] [CrossRef]
- Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A. The impact of shipping emissions on air pollution in the Greater North Sea region—Part 1: Current emissions and concentrations. Atmos. Chem. Phys. Discuss. 2016, 15, 11277–11323. [Google Scholar] [CrossRef]
- Fridell, E.; Salberg, H.; Salo, K. Measurements of Emissions to Air from a Marine Engine Fueled by Methanol. J. Mar. Sci. Appl. 2021, 20, 138–143. [Google Scholar] [CrossRef]
- Zeretzke, M. Entwicklung eines Modells zur Quantifizierung von Luftschadstoffen, die Durch Schiffsdieselmotoren auf See Emittiert Werden. Master’s Thesis, Technische Universität Hamburg Harburg, Hamburg, Germany, 2013. [Google Scholar]
- EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar] [CrossRef]
Ship Number Incr. [%] | Capacity Incr. (crel) [%] | Eff. Incr. [%] | Lifetime [y] | |||||
---|---|---|---|---|---|---|---|---|
Ship Type/Year | 2025 | 2040 | 2050 | 2025 | 2040 | 2050 | Annual | |
Bulk | 2 | 19 | ||||||
Cargo | 26 | |||||||
Cruise | 27 | |||||||
Passenger | 27 | |||||||
Tanker | 26 | |||||||
Other | 25 |
Fuel Type/Year | 2015 | 2025 | 2040 | 2050 |
---|---|---|---|---|
Residual fuel | 10 | 1 | ||
Distillate fuel | 22 | 23 | ||
LNG | 57 | 33 | ||
MeOH | 0 | 1 | 2 | |
0 | 0 | 10 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarzkopf, D.A.; Petrik, R.; Hahn, J.; Ntziachristos, L.; Matthias, V.; Quante, M. Future Ship Emission Scenarios with a Focus on Ammonia Fuel. Atmosphere 2023, 14, 879. https://doi.org/10.3390/atmos14050879
Schwarzkopf DA, Petrik R, Hahn J, Ntziachristos L, Matthias V, Quante M. Future Ship Emission Scenarios with a Focus on Ammonia Fuel. Atmosphere. 2023; 14(5):879. https://doi.org/10.3390/atmos14050879
Chicago/Turabian StyleSchwarzkopf, Daniel A., Ronny Petrik, Josefine Hahn, Leonidas Ntziachristos, Volker Matthias, and Markus Quante. 2023. "Future Ship Emission Scenarios with a Focus on Ammonia Fuel" Atmosphere 14, no. 5: 879. https://doi.org/10.3390/atmos14050879
APA StyleSchwarzkopf, D. A., Petrik, R., Hahn, J., Ntziachristos, L., Matthias, V., & Quante, M. (2023). Future Ship Emission Scenarios with a Focus on Ammonia Fuel. Atmosphere, 14(5), 879. https://doi.org/10.3390/atmos14050879