Analysis of Data on Air Pollutants in the City by Machine-Intelligent Methods Considering Climatic and Geographical Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality Data from Automated Monitoring Stations (AMS)
2.2. Chemical-Analytical Research
2.3. Bio Experiment with the Cultivation of Watercress
2.4. Building Models of Atmospheric Air Quality with Elements of Machine Learning
2.4.1. Problem Statement and Model Training
2.4.2. Implementation Algorithm
- Preparation of input data, reduction to a dimensionless form;
- Getting input data;
- Identification of the relationship between the parameters. This is done by calculating the correlation coefficients for all columns, that is, with a check for multicollinearity;
- The following methods are considered for constructing regression models: Multilayer Perceptron Regressor (MLPR), Forest Regressor (RFR), and AdaBoost regression algorithm;
- After preparing the models, the initial data is divided into 2 subsamples: test and training;
- Model evaluation measures were carried out using the coefficient of determination (R-squared), MSE and MAE estimates;
- The analysis of the results and conclusions were carried out.
3. Results
3.1. Air Pollution Index (API)
3.2. Results and Analysis of Chemical-Analytical Research
3.3. Results of the Bio Experiment with the Cultivation of Watercress
3.4. Relationship between AMS and Chemical-Analytical Research Indicators
3.5. Assessment of Model Quality in Various Metrics
3.6. Analysis of Model Construction Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bureau of National Statistics. On the Change in the Population of the Republic of Kazakhstan from the Beginning of 2022 to October 1, 2022. 9 November 2022. Available online: https://new.stat.gov.kz/ru/industries/social-statistics/demography/ (accessed on 10 April 2023). (In Russian)
- Kozybayev, M.K. (Ed.) Kazakh Soviet Encyclopedia; Macmillan: Almaty, Kazakhstan, 1983; p. 12. Available online: http://www.encyclopedia.ru/cat/books/book/37415/ (accessed on 9 April 2023). (In Russian)
- Nurgaliev, R.N. (Ed.) The Kazakh SSR: A short encyclopedia. In Kazakh Soviet Encyclopedia; Macmillan: Almaty, Kazakhstan, 1988; Volume 2, pp. 69–71. ISBN 5-89800-002-X. (In Russian) [Google Scholar]
- Cherednichenko, A.V. Time Series of Temperature and Precipitation; Statistical analysis; MegaPrint: Almaty, Kazakhstan, 2013; 365p, pp. 36–37. (In Russian) [Google Scholar]
- A Comprehensive Program for Improving the Environmental Situation in Almaty for 1999–2015. “Taza aua—Zhanga daua”; Almaty City Department for Environmental Protection: Almaty, Kazakhstan, 2002; pp. 1–11. Available online: https://adilet.zan.kz/rus/docs/V99R000057_/links (accessed on 1 April 2023). (In Russian)
- Belyi, A.V. The Role of Climatic Factors in the Processes of Pollution and Purification of the Atmosphere of the Southwestern Part of the Almaty Region. Ph.D. Thesis, Kazakh National Pedagogical University, Almaty, Kazakhstan, 21 November 1997; pp. 22–25. Available online: https://earthpapers.net/rol-klimaticheskih-faktorov-v-protsessah-zagryazneniya-i-oyischeniya-atmosfery-yugo-zapadnoy-chasti-almatinskoy-oblasti (accessed on 2 April 2023). (In Russian).
- Vilesov, E.N. Climatic Conditions of Almaty; Publishing House of Al-Farabi Kazakh National University: Almaty, Kazakhstan, 2010; pp. 75–78. Available online: https://elibrary.kaznu.kz/wp-content/uploads/2020/05/vilesov_evgenii_nikolaevich.pdf (accessed on 5 April 2023). (In Russian)
- Helmholtz, N.F. Mountain-Valley Circulation of the Northern Slopes of the Tien Shan; Hydrometeoizdat: Leningrad, Russia, 1963; 330p, Available online: https://vital.lib.tsu.ru/vital/access/services/Download/vtls:000574703/SOURCE1 (accessed on 3 April 2023). (In Russian)
- Kerimray, A.; Kenesov, B.; Karaja, F. Trends and health impacts of major urban air pollutants in Kazakhstan. J. Air Waste Manag. Assoc. 2019, 69, 1331–1347. [Google Scholar] [CrossRef] [PubMed]
- The Most Polluted Countries in the World IQAir in 2021—Rating PM2.5 AirVisual. Available online: https://www.airvisual.com/world-most-polluted-countries (accessed on 1 April 2023).
- The World Bank. Global Health Costs Associated with Air Pollution PM2.5: Rationale for Action after 2021. International Development Is in the Spotlight; World Bank: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Almaty City Air Quality Monitoring. Available online: https://www.airkaz.org/index.php (accessed on 2 April 2023).
- Airnow On the Air of the State Department. 2021. Available online: https://www.airnow.gov/international/usembassies-and-consulates/#Kazakhstan$Almaty (accessed on 2 April 2023).
- Cohen, A.J.; Brower, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekrif, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of diseases caused by ambient air pollution: Analysis of data from the global burden study diseases. Lancet 2015, 389, 1907–1918. [Google Scholar] [CrossRef]
- Nugmanova, D.; Sokolova, L.; Feshchenko, Y.; Iashyna, L.; Gyrina, O.; Malynovska, K.; Mustafayev, I.; Aliyeva, G.; Makarova, J.; Vasylyev, A.; et al. Prevalence, burden and risk factors associated with bronchial asthma in the countries of the Commonwealth of Independent States (Ukraine, Kazakhstan and Azerbaijan): The results of the MAIN study. BMC Pulm. Med. 2018, 18, 110. [Google Scholar] [CrossRef]
- Nugmanova, D.; Feshchenko, Y.; Yashina, L.; Girina, O.; Malinovskaya, K.; Mammadbekov, E.; Akhundova, I.; Nurkina, N.; Tarik, L.; Makarova, J.; et al. Prevalence, burden and risk factors associated with chronic obstructive pulmonary disease in the Commonwealth of Independent States (Ukraine, Kazakhstan and Azerbaijan): The results of the MAIN study. BMC Pulm. Med. 2018, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Kenesari, D.; Kenesari, A.; Adilgireuly, Z.; Akzholova, N.; Yerzhanova, A.; Dosmukhametov, A.; Syzdykov, D.; Masud, A.-R.; Saliev, T. Air pollution in Kazakhstan and assessment of its health risk. Ann. Glob. Health 2019, 85, 133. [Google Scholar] [CrossRef] [PubMed]
- Semenova, Y.; Zhunusov, Y.; Pivina, L.; Abisheva, A.; Tinkov, A.; Belikhina, T.; Skalnyi, A.; Zhanaspaev, M.; Bulegenov, T.; Glushkova, N.; et al. Trace element biomonitoring in hair and blood of occupationally unexposed population residing in polluted areas of East Kazakhstan and Pavlodar regions. J. Trace Elem. Med. Biol. 2019, 56, 31–37. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/ru/news-room/fact-sheets/detail/ambient-(outdoors)-air%20quality%20and%20health (accessed on 12 April 2023).
- World Bank. The World Bank Municipal Energy Efficiency Improvement Plan for the City of Almaty; World Bank: Washington, DC, USA, 2017; Available online: http://documents.worldbank.org/curated/en/855641510934183633/pdf/121463-ESM-P130013-PUBLIC-KEEPAmatyEEPlan%20Novengfinal.pdf (accessed on 1 August 2019).
- World Bank. Towards a Cleaner Industry and Improved Air Quality Monitoring in Kazakhstan; The World Bank: Washington, DC, USA, 2013; Available online: http://documents.worldbank.org/curated/en/132151468047791898/Towards-cleaner-idustry-and-improved-airquality-monitoring-in-Kazakhstan (accessed on 5 April 2023).
- Statistics Committee of the Ministry of National Economy of the Republic of Kazakhstan. Transportation of Passenger Cars. Available online: http://old.stat.gov.kz/getImg?id=ESTAT099960 (accessed on 9 April 2023).
- Carlsen, L.; Baimatova, N.K.; Kenessov, B.N.; Kenessova, O.A. Assessment of air quality in Almaty. Focusing on the traffic component. Int. J. Biol. Chem. 2013, 5, 46–69. Available online: https://ijbch.kaznu.kz/index.php/kaznu/article/view/82 (accessed on 1 April 2023).
- Kerimray, A.; Azbanbayev, E.; Kenessov, B.; Plotitsyn, P.; Alimbayeva, D.; Karaca, F. Spatio-temporal fluctuations and contributing factors of air pollution in Almaty, Kazakhstan. Aerosols Air Qual. Res. 2020, 20, 1340–1352. [Google Scholar] [CrossRef]
- Newsletters on the State of the Environment of the Republic of Kazakhstan. Kazhydromet. 2021. Available online: https://www.kazhydromet.kz/en/ecology/informacionnye-byulleteni-o-sostoyanii-okruzhayuschey-sredy-respubliki-kazahstan (accessed on 11 April 2023).
- Baimatova, N.; Omarova, A.; Muratuly, A.; Tursumbayeva, M.; Ibragimova, O.P.; Bukenov, B.; Kerimray, A. Seasonal fluctuations and the impact of quarantine due to COVID-19 on air quality in cities of Kazakhstan. Environ. Process. 2022, 9, 48. [Google Scholar] [CrossRef]
- Voychik, V.; Adikanova, S.; Madiyarov, M.N.; Myrzagalieva, A.B.; Temirbekov, N.M.; Junisbekov, M.; Pavlovsky, L. Probabilistic and statistical modeling of harmful transport impurities in the atmosphere from motor transport. J. Chronol. Affin. 2017, 19, 795–808. Available online: https://ros.edu.pl/images/roczniki/2017/48_ROS_V19_R2017.pdf (accessed on 1 April 2023).
- Adikanova, S.; Madiyarov, M.N.; Temirbekov, N.M. Probabilistic statistical modeling of air pollution from vehicles. AIP Conf. Proc. 2017, 1880, 060017. [Google Scholar] [CrossRef]
- Dutta, A.K.; Sampson, J.; Ahmad, S.; Avudaiappan, T.; Narayanasamy, K.; Pustokhina, I.V.; Pustokhin, D.A. Monitoring of air pollution in the environment using hybrid deep learning. Comput. Mater. Contin. 2023, 75, 3993–4008. [Google Scholar] [CrossRef]
- Kelechi, A.H.; Alsharif, M.H.; Agbaetuo, C.; Ubadike, O.; Aligbe, A.; Uthansakul, P.; Kannadasan, R.; Aly, A.A. Ali Development of an inexpensive air quality monitoring system using Arduino and ThingSpeak. Comput. Mater. Contin. 2022, 70, 151–169. [Google Scholar] [CrossRef]
- Plocoste, T.; Laventure, S. Forecasting PM10 Concentrations in the Caribbean Area Using Machine Learning Models. Atmosphere 2023, 14, 134. [Google Scholar] [CrossRef]
- Aydosov, A.; Aydosov, G.; Zaurbekov, N.; Zaurbekova, N.; Zaurbekova, G.; Zaurbekov, I. Mathematical modeling of atmospheric pollution in an industrial region in order to develop software for an information system for assessing the environmental situation. Ecology 2019, 28, 349–358. Available online: https://ekolojidergisi.com/download/mathematical-modelling-of-atmospheric-pollution-in-an-industrial-region-with-a-view-to-design-an-5601.pdf (accessed on 1 April 2023).
- Zaurbekov, N.; Aidosov, A.; Zaurbekova, N.; Aidosov, G.; Zaurbekova, G.; Zaurbekov, I. Emission spread from mass and energy exchange in the atmospheric surface layer: Two-dimensional simulation. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2832–2841. [Google Scholar] [CrossRef]
- Abdibekov, U.; Karzhaubayev, K. Numerical Simulation of Turbulent Pollution Transport in Thermally Stratified Atmosphere. J. Math. Mech. Comput. Sci. 2015, 86, 10–13. Available online: https://bm.kaznu.kz/index.php/kaznu/article/view/305 (accessed on 1 April 2023).
- Issakhov, A.; Omarova, P.; Issakhov, A. Numerical study of thermal influence to pollutant dispersion in the idealized urban street road. Air Qual. Atmos. Health 2020, 13, 1045–1056. [Google Scholar] [CrossRef]
- Issakhov, A.; Alimbek, A.; Issakhov, A. A numerical study for the assessment of air pollutant dispersion with chemical reactions from a thermal power plant. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1035–1061. [Google Scholar] [CrossRef]
- Temirbekov, A.N.; Danaev, N.T.; Malgazhdarov, E.A. Modeling of Polutants in the Atmosphere Based on Photochemical Reactions. Eurasian Chem. Technol. J. Int. High. Educ. Acad. Sci. 2014, 16, 61–71. [Google Scholar] [CrossRef]
- Temirbekov, A.N.; Urmashev, B.A.; Gromaszek, K. Investigation of the stability and convergence of difference schemes for the three-dimensional equations of the atmospheric boundary layer. Int. J. Electron. Telecommun. 2018, 64, 391–396. [Google Scholar] [CrossRef]
- Hygienic Standards for Atmospheric Air in Urban and Rural Settlements. Order of the Minister of National Economy of the Republic of Kazakhstan. 2015. Available online: http://adilet.zan.kz/rus/docs/V1500011036 (accessed on 17 January 2021).
- Monitoring of the Air Quality of the City of Almaty by Automated Monitoring Stations SmartEco. Available online: http://185.125.44.116:8085/Maps/AlmatyFree (accessed on 19 April 2023).
- Siudek, P.; Frankowski, M.; Siepak, J. Trace element distribution in the snow cover from an urban area in central Poland. Environ. Monit. Assess. 2015, 187, 225. [Google Scholar] [CrossRef] [PubMed]
- Aurelien, G. Applied Machine Learning Using Scikit-Learn and TensorFlow: Concepts, Tools and Techniques for Creating Intelligent Systems; Alfa-book LLC.: St. Petersburg, Russia, 2018; 688p. [Google Scholar]
Y1 | Y2 | Y3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Methods | R2 | MSE | MAE | R2 | MSE | MAE | R2 | MSE | MAE |
Random Forest | 95% | 0.02 cm | 0.12 cm | 92% | 0.025 cm | 0.12 cm | 97% | 0.017 cm | 0.14 cm |
AdaBoost | 85% | 0.05 cm | 0.443 cm | 84% | 0.052 cm | 0.31 cm | 92% | 0.054 cm | 0.535 cm |
MLPR | 25% | 0.27 cm | 0.9 cm | 5% | 0.3 cm | 0.86 cm | 12% | 0.61 cm | 1.73 cm |
Concentrations of Pollutants | PM10/PM2.5 | CO2 | PP | SO42− | Pb | Zn | Cd |
---|---|---|---|---|---|---|---|
Y1 (number of germinated seeds) | 0.21 | 0.15 | 0.13 | 0.23 | 0.12 | 0.03 | 0.13 |
Y2 (length of seedlings) | 0.13 | 0.32 | 0.1 | 0.17 | 0.02 | 0.07 | 0.19 |
Y3 (length of roots) | 0.11 | 0.2 | 0.05 | 0.37 | 0.03 | 0.03 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temirbekov, N.; Kasenov, S.; Berkinbayev, G.; Temirbekov, A.; Tamabay, D.; Temirbekova, M. Analysis of Data on Air Pollutants in the City by Machine-Intelligent Methods Considering Climatic and Geographical Features. Atmosphere 2023, 14, 892. https://doi.org/10.3390/atmos14050892
Temirbekov N, Kasenov S, Berkinbayev G, Temirbekov A, Tamabay D, Temirbekova M. Analysis of Data on Air Pollutants in the City by Machine-Intelligent Methods Considering Climatic and Geographical Features. Atmosphere. 2023; 14(5):892. https://doi.org/10.3390/atmos14050892
Chicago/Turabian StyleTemirbekov, Nurlan, Syrym Kasenov, Galym Berkinbayev, Almas Temirbekov, Dinara Tamabay, and Marzhan Temirbekova. 2023. "Analysis of Data on Air Pollutants in the City by Machine-Intelligent Methods Considering Climatic and Geographical Features" Atmosphere 14, no. 5: 892. https://doi.org/10.3390/atmos14050892
APA StyleTemirbekov, N., Kasenov, S., Berkinbayev, G., Temirbekov, A., Tamabay, D., & Temirbekova, M. (2023). Analysis of Data on Air Pollutants in the City by Machine-Intelligent Methods Considering Climatic and Geographical Features. Atmosphere, 14(5), 892. https://doi.org/10.3390/atmos14050892