A Two-Stage Hybrid Model for Determining the Scopes and Priorities of Joint Air Pollution Control
Abstract
:1. Introduction
- We define an indicator system to evaluate the priority of JPCAP sub-regions for air pollution control, including the impact of a sub-region on the pollution level of the entire region, as well as the urgency and elasticity of sub-regional air pollution control.
- We propose a new two-stage hybrid model based on the data mining techniques and multi-attribute decision making method for determining the appropriate scopes and priorities of JPCAP sub-regions.
- This work conducts a case study with 27 cities in the YRD region. The experimental results demonstrate that the proposed model is scientific and reasonable.
2. Methods
2.1. Stage 1: Determining the Sub-Regional Scopes of JPCAP Based on an Extended Hierarchical Cluster Analysis Technique
- i:
- Based on long-term and wide-area air pollutant monitoring data, we conduct air pollution correlation analysis between cities in the target region with the Pearson correlation coefficient, and construct a correlation matrix on m cities, where refers to the correlation between city i and city j .
- ii:
- Divide the cities of the target region into different clusters by means of agglomerative hierarchical clustering. At first, consider each city to be a separate cluster. Then, we merge the two clusters with the highest correlation coefficient to form a new cluster. Repeat the procedure until all clusters have been assigned to a large cluster.
- iii:
- Identify the optimal cluster partition by means of the silhouette coefficient. Researchers frequently use the cohesion and separation coefficients to evaluate the quality of cluster partition [44]. The cohesion coefficient quantifies the degree of agglomeration of cities within a cluster by quantifying the similarity of any city to other cities in the cluster. The separation coefficient assesses the degree of separation of cities between clusters by quantifying the distance of any city from cities in other clusters. It’s worth noting that the distance between cities is the inverse of their similarity. The silhouette coefficient, which combines the effects of intra-cluster cohesion and inter-cluster separation, is thus more rational. According to the silhouette coefficient definition, the larger the silhouette coefficient is, the tighter the connections within clusters and the sparser connections between clusters are. The cluster partition with the highest silhouette coefficient is optimal and should be chosen.
2.2. Stage 2: Determining the Priorities of JPCAP Sub-Regions Based on a Comprehensive Decision-Making Framework
2.2.1. Define Evaluation Indicators
2.2.2. Construct and Weight Decision Matrix
- i:
- Construct the decision matrix , where k refers to the number of sub-regions. The impact of pollution on the entire region from each sub-region, can be calculated using Equations (1) and (2) to construct the vector . The health damage for these sub-regions can be computed using Equation (3) to construct the vector . The potential of pollution control in these sub-regions, can be calculated using Equation (4) to construct the vector .
- ii:
- Standardize the decision matrix . Due to the different natures of the indicators, they have different ranges or units of measurement. Thus, the decision matrix must be standardized as follows
- iii:
- Determine the weights for three evaluation indicators. First, we define the positive ideal solution , . Second, minimize the sum of Euclidean weighted distance between each sub-region and the positive ideal solution, and we can obtain the weights for indicators 1 (impact of pollution, ), 2 (health damage, ), and 3 (potential of control, ). The proposed indicator weighting optimization method is mathematically defined as
- iv:
- Obtain the weighted decision matrix , .
2.2.3. Determine the Priorities of JPCAP Based on VIKOR
- i:
- Calculate the maximum group utility for sub-region i under three evaluation indicators, as defined below
- ii:
- Calculate the minimum individual regret value for sub-region i , as defined below
- iii:
- Calculate the comprehensive evaluation value for sub-region i , as defined below
- iv:
- Obtain the priorities for JPCAP sub-regions by ranking in descending order. The top-ranked sub-regions are assigned higher priority in pollution control.
3. An Illustrative Case
3.1. Materials
3.2. Results and Discussion
3.2.1. The Scopes of JPCAP Sub-Regions for the YRD Region
3.2.2. The Priorities of JPCAP Sub-Regions for the YRD Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sulaymon, I.D.; Zhang, Y.; Hu, J.; Hopke, P.K.; Zhang, Y.; Zhao, B.; Xing, J.; Li, L.; Mei, X. Evaluation of regional transport of PM2.5 during severe atmospheric pollution episodes in the western Yangtze River Delta, China. J. Environ. Manag. 2021, 293, 112827. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fang, C.; He, S. The influence of environmental efficiency on PM2.5 pollution: Evidence from 283 Chinese prefecture-level cities. Sci. Total Environ. 2020, 748, 141549. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, R.; Frostad, J.; Estep, K. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Higgins, C.D.; Adams, M.D.; Mohamed, M.; Koutrakis, P. The health impacts of weekday traffic: A health risk assessment of PM2.5 emissions during congested periods. Environ. Int. 2018, 111, 164–176. [Google Scholar] [CrossRef]
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, C.; Dong, C.; Yu, H.; Wang, Y.; Yang, X. Is the key-treatment-in-key-areas approach in air pollution control policy effective? Evidence from the action plan for air pollution prevention and control in China. Sci. Total Environ. 2022, 843, 156850. [Google Scholar] [CrossRef]
- Fontes, T.; Li, P.; Barros, N.; Zhao, P. Trends of PM2.5 concentrations in China: A long term approach. J. Environ. Manag. 2017, 196, 719–732. [Google Scholar] [CrossRef]
- Maji, K.J.; Dikshit, A.K.; Arora, M.; Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018, 612, 683–693. [Google Scholar] [CrossRef]
- Tilt, B. China’s air pollution crisis: Science and policy perspectives. Environ. Sci. Policy 2019, 10, 275–280. [Google Scholar] [CrossRef]
- Khuzestani, R.B.; Schauer, J.J.; Wei, Y.; Zhang, L.; Cai, T.; Zhang, Y. Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China. Environ. Pollut. 2017, 229, 1019–1031. [Google Scholar] [CrossRef]
- Masiol, M.; Benetello, F.; Harrison, R.M.; Formenton, G.; Gaspari, F.D.; Pavoni, B. Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy). Atmos. Environ. 2015, 117, 19–31. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Dabanlı, İ.; Şişman, E.; Şen, Z. Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos. Pollut. Res. 2019, 10, 88–96. [Google Scholar] [CrossRef]
- Moufarrej, L.; Courcot, D.; Ledoux, F. Assessment of the PM2.5 oxidative potential in a coastal industrial city in Northern France: Relationships with chemical composition, local emissions and long range sources. Sci. Total Environ. 2020, 748, 141448. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R.V. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. [Google Scholar] [CrossRef]
- Greenstone, M.; He, G.; Li, S.; Zou, E. China’s war on pollution: Evidence from the first 5 years. Rev. Environ. Econ. Policy 2021, 15, 281–299. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the emissions database for global atmospheric research. Sci. Data 2020, 7, 121–137. [Google Scholar] [CrossRef]
- Burkart, K.; Canário, P.; Breitner, S.; Schneider, A.; Scherber, K.; Andrade, H.; Alcoforado, M.J.; Endlicher, W. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ. Pollut. 2013, 183, 54–63. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, S.; Zhao, L.; Zhu, D.; Mao, S. Cooperative governance of inter-provincial air pollution based on a black–scholes options pricing model. J. Clean. Prod. 2020, 277, 124031. [Google Scholar] [CrossRef]
- Albahri, A.S.; Al-Obaidi, J.R.; Zaidan, A.A.; Albahri, O.S.; Hamid, R.A.; Zaidan, B.B.; Alamoodi, A.H.; Hashim, M. Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. Int. J. Inf. Tech. Decis. 2020, 19, 1247–1269. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green infrastructure for air quality improvement in street canyons. Environ. Int. 2021, 146, 106288. [Google Scholar] [CrossRef]
- Zou, B.; Li, S.; Lin, Y.; Wang, B.; Cao, S.; Zhao, X.; Peng, F.; Qin, N.; Guo, Q.; Feng, H.; et al. Efforts in reducing air pollution exposure risk in China: State versus individuals. Environ. Int. 2020, 137, 105504. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Z.; Yang, T.; Xia, Q. Does the expansion of the joint prevention and control area improve the air quality? Evidence from China’s Jing-Jin-Ji region and surrounding areas. Sci. Total Environ. 2020, 706, 136034. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tan, Z.; Yu, X.; Zhang, R.; Wei, Y.M.; Zhang, M.; Sun, H.; Meng, J.; Mi, Z. The health benefits and economic effects of cooperative PM2.5 control: A cost-effectiveness game model. J. Clean. Prod. 2019, 228, 1572–1585. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Duan, F.; He, K.; Zhu, L.; Huang, T.; Kimoto, T.; Ma, X.; Ma, T.; Xu, L.; et al. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. Environ. Pollut. 2017, 229, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, L. A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration. Atmos. Environ. 2018, 174, 25–42. [Google Scholar] [CrossRef]
- Liu, K.; Lin, B. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 2019, 206, 356–364. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Zong, H. Citizen perception of APEC blue and air pollution management. Atmos. Environ. 2019, 214, 116853. [Google Scholar] [CrossRef]
- Dong, J.; Liu, P.; Song, H.; Yang, D.; Yang, J.; Song, G.; Miao, C.; Zhang, J.; Zhang, L. Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the “2 + 26” cities of Northern China. Environ. Pollut. 2022, 315, 120392. [Google Scholar] [CrossRef]
- Sawut, R.; Li, Y.; Kasimu, A.; Ablat, X. Examining the spatially varying effects of climatic and environmental pollution factors on the NDVI based on their spatially heterogeneous relationships in Bohai Rim, China. J. Hydrol. 2023, 617, 128815. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H. Coupling coordination analysis and spatio-temporal heterogeneity between urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, F.; Qin, C.; Li, Y. Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint prevention and control of atmospheric pollution in China. Chemosphere 2018, 210, 1176–1184. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, L.; Xue, J.; Gao, O.; Li, H.; Jiang, R.; Qiu, X.; Zhang, S. Methods for defining the scopes and priorities for joint prevention and control of air pollution regions based on data-mining technologies. J. Clean. Prod. 2018, 185, 912–921. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, S.; Xing, J.; Chang, X.; Ding, D.; Zheng, H. Regional transport in Beijing-Tianjin-Hebei region and its changes during 2014–2017: The impacts of meteorology and emission reduction. Sci. Total Environ. 2020, 737, 139792. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Yao, Z.; Che, H.; Gong, S.; Wang, M.; Zhao, M.; Jing, B. Source apportionment of particulate matter based on numerical simulation during a severe pollution period in Tangshan, North China. Environ. Pollut. 2020, 266, 115133. [Google Scholar] [CrossRef]
- Sun, L.; Du, J.; Li, Y.F. A new method for dividing the scopes and priorities of air pollution control based on environmental justice. Environ. Sci. Pollut. Res. 2021, 28, 12858–12869. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.; Zhang, S. Will joint regional air pollution control be more cost-effective? An empirical study of China’s Beijing–Tianjin–Hebei region. J. Environ. Manag. 2015, 149, 27–36. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “air pollution prevention and control action plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Sun, X.; Wang, W. The influence of multiple environmental regulations on haze pollution: Evidence from China. Atmos. Pollut. Res. 2020, 11, 170–179. [Google Scholar] [CrossRef]
- Ormanova, G.; Karaca, F.; Kononova, N. Analysis of the impacts of atmospheric circulation patterns on the regional air quality over the geographical center of the Eurasian continent. Atmos. Res. 2020, 237, 104858. [Google Scholar] [CrossRef]
- Acheampong, A.O. Modelling for insight: Does financial development improve environmental quality? Energ. Econ. 2019, 83, 156–179. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Wang, C.; Xue, J. Towards more effective air pollution governance strategies in China: A systematic review of the literature. J. Clean. Prod. 2021, 297, 126724. [Google Scholar] [CrossRef]
- Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [Google Scholar] [CrossRef]
- Xue, J.; Xu, Y.; Zhao, L.; Wang, C.; Rasool, Z.; Ni, M.; Wang, Q.; Li, D. Air pollution option pricing model based on AQI. Atmos. Pollut. Res. 2019, 10, 665–674. [Google Scholar] [CrossRef]
- Yang, P.; Liu, X.; Xu, G. A dynamic weighted TOPSIS method for identifying influential nodes in complex networks. Mod. Phys. Lett. B 2018, 32, 1850216. [Google Scholar] [CrossRef]
- Tang, S.; Yan, Q.; Shi, W.; Wang, X.; Sun, X.; Yu, P.; Wu, J.; Xiao, Y. Measuring the impact of air pollution on respiratory infection risk in China. Environ. Pollut. 2018, 232, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Maji, K.; Ye, W.; Arora, M.; Nagendra, S. PM2.5-related health and economic loss assessment for 338 Chinese cities. Environ. Int. 2018, 121, 392–403. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Niu, X.; Liu, Z. Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China. J. Clean. Prod. 2020, 257, 120605. [Google Scholar] [CrossRef]
- Yang, P.; Xu, G.; Chen, H. Multi-attribute ranking method for identifying key nodes in complex networks based on GRA. Int. J. Mod. Phys. B 2018, 32, 1850363. [Google Scholar] [CrossRef]
- Choi, J.; Park, R.J.; Lee, H.M.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.H.; Ban, S.J.; Lee, M.D.; et al. Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ. 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Upadhyay, A.; Dey, S.; Chowdhury, S.; Goyal, P. Expected health benefits from mitigation of emissions from major anthropogenic PM2.5 sources in India: Statistics at state level. Environ. Pollut. 2018, 242, 1817–1826. [Google Scholar] [CrossRef]
- Ashayeri, M.; Abbasabadi, N.; Heidarinejad, M.; Stephens, B. Predicting intraurban PM2.5 concentrations using enhanced machine learning approaches and incorporating human activity patterns. Environ. Res. 2021, 196, 110423. [Google Scholar] [CrossRef]
- Morillas, H.; Marcaida, I.; Maguregui, M.; Upasen, S.; Gallego-Cartagena, E.; Madariaga, J.M. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination. J. Clean. Prod. 2019, 226, 369–378. [Google Scholar] [CrossRef]
- Kim, E.; Kim, B.U.; Kim, H.C.; Kim, S. Direct and cross impacts of upwind emission control on downwind PM2.5 under various NH3 conditions in Northeast Asia. Environ. Pollut. 2021, 268, 115794. [Google Scholar] [CrossRef]
Sub-Region | Area | ||
---|---|---|---|
R1 | 0.803 | 96,273 | 0.3172 |
R2 | 1.005 | 67,240 | 0.2773 |
R3 | 1.025 | 32,605 | 0.1371 |
R4 | 0.979 | 34,201 | 0.1374 |
R5 | 0.159 | 13,398 | 0.0087 |
Sub-Region | Population | |||
---|---|---|---|---|
R1 | 97,462,700 | 1012.36 | 45.4499 | 46,011 |
R2 | 30,947,800 | 459.03 | 35.2251 | 16,171 |
R3 | 19,146,200 | 587.22 | 32.5873 | 19,135 |
R4 | 5,806,700 | 169.78 | 50.1151 | 8508 |
R5 | 4,079,000 | 304.45 | 58.8516 | 17,917 |
Sub-Region | |||
---|---|---|---|
R1 | 26.5049 | 45.4499 | 0.5833 |
R2 | 20.8202 | 35.2251 | 0.5911 |
R3 | 17.0860 | 32.5873 | 0.5243 |
R4 | 29.8719 | 50.1151 | 0.5961 |
R5 | 31.3316 | 58.8516 | 0.5324 |
Sub-Region | S | R | Q | Priority |
---|---|---|---|---|
R1 | 1.5039 | 0.9176 | 1.0000 | 1 |
R2 | 1.0537 | 0.4904 | 0.3648 | 2 |
R3 | 0.9800 | 0.4809 | 0.3146 | 3 |
R4 | 0.8446 | 0.4684 | 0.2271 | 4 |
R5 | 0.6178 | 0.3573 | 0.0000 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Yi, H.; Zhao, L.; Chen, L. A Two-Stage Hybrid Model for Determining the Scopes and Priorities of Joint Air Pollution Control. Atmosphere 2023, 14, 891. https://doi.org/10.3390/atmos14050891
Yang P, Yi H, Zhao L, Chen L. A Two-Stage Hybrid Model for Determining the Scopes and Priorities of Joint Air Pollution Control. Atmosphere. 2023; 14(5):891. https://doi.org/10.3390/atmos14050891
Chicago/Turabian StyleYang, Pingle, Hongru Yi, Laijun Zhao, and Luping Chen. 2023. "A Two-Stage Hybrid Model for Determining the Scopes and Priorities of Joint Air Pollution Control" Atmosphere 14, no. 5: 891. https://doi.org/10.3390/atmos14050891
APA StyleYang, P., Yi, H., Zhao, L., & Chen, L. (2023). A Two-Stage Hybrid Model for Determining the Scopes and Priorities of Joint Air Pollution Control. Atmosphere, 14(5), 891. https://doi.org/10.3390/atmos14050891