Detection of Migrating and Non-Migrating Atmospheric Tides Derived from ERA5 Temperature Meteorological Analyses
Abstract
:1. Introduction
2. Description of the Data
2.1. Description of ERA5 Re-Analyses
2.2. Description of the GSWM Model
3. Temperature Tide Identification
3.1. Calculation of Tidal Characteristics
3.2. Tide Histograms
4. Comparisons of Tidal Characteristics with Theory
5. Non-Migrating Tides
6. Observation Requirements
7. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, S.; Lindzen, R. Atmospheric Tides; Springer: Dordrecht, The Netherlands, 1970; Volume 10, p. 106. [Google Scholar] [CrossRef]
- Morel, B.; Keckhut, P.; Bencherif, H.; Hauchecorne, A.; Megie, G.; Baldy, S. Investigation of the tidal variations in a 3-D dynamics-chemistry-transport model of the middle atmosphere. J. Atmos. Sol. Terr. Phys. 2004, 66, 251–265. [Google Scholar] [CrossRef]
- Manson, A.; Meek, C.; Hagan, M.; Hall, C.; Hocking, W.; MacDougall, J.; Franke, S.; Riggin, D.; Fritts, D.; Vincent, R.; et al. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: Multi-year MF radar observations from 2 to 70° N, and the GSWM tidal model. J. Atmos. Sol. Terr. Phys. 1999, 61, 809–828. [Google Scholar] [CrossRef]
- Baron, P.; Murtagh, D.; Eriksson, P.; Mendrok, J.; Ochiai, S.; Pérot, K.; Sagawa, H.; Suzuki, M. Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder. Atmos. Meas. Tech. 2018, 11, 4545–4566. [Google Scholar] [CrossRef]
- Hocking, W.; Hocking, A. Temperature tides determined with meteor radar. Ann. Geophys. 2002, 20, 1447–1467. [Google Scholar] [CrossRef]
- Leblanc, T.; McDermid, I.; Ortland, D. Lidar observations of the middle atmospheric thermal tides and comparison with the High Resolution Doppler Imager and Global Scale Wave Model: 2. October observations at Mauna Loa (19.5° N). J. Geophys. Res. Atmos. 1999, 104, 11931–11938. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Z.; White, M.; Chen, H.; Krueger, D.; She, C. Lidar observations of seasonal variation of diurnal mean temperature in the mesopause region over Fort Collins, Colorado (41° N, 105° W). J. Geophys. Res. Atmos. 2000, 105, 12371–12379. [Google Scholar] [CrossRef]
- Kopp, M.; Gerding, M.; Hoffner, J.; Lubken, F.J. Tidal signatures in temperatures derived from daylight lidar soundings above Kuhlungsborn (54° N, 12° E). J. Atmos. Sol. Terr. Phys. 2015, 127, 37–50. [Google Scholar] [CrossRef]
- Morel, B.; Bencherif, H.; Keckhut, P.; Baldy, S.; Hauchecorne, A. Evidence of tidal perturbations in the middle atmosphere over Southern Tropics as deduced from LIDAR data analyses. J. Atmos. Sol. Terr. Phys. 2002, 64, 1979–1988. [Google Scholar] [CrossRef]
- She, C.; Li, T. Tidal perturbations and variability in the mesopause region over Fort Collins, Colorado (41° N, 105° W): Continuous multi-day temperature and wind lidar observations. Geophy. Res. Lett. 2004, 31, 24011. [Google Scholar] [CrossRef]
- Ricaud, P.; Brillet, J.; De La Noe, J.; Parisot, J. Diurnal and seasonal variations of stratomesospheric ozone: Analysis of ground-based microwave measurements in Bordeaux, France. J. Geophys. Res. 1991, 96, 18617–18629. [Google Scholar] [CrossRef]
- Haefele, A.; Hocke, K.; Kampfer, N.; Keckhut, P.; Marchand, M.; Bekki, S.; Morel, B.; Egorova, T.; Rozanov, E. Diurnal changes in middle atmospheric H20 and O3: Observations in the Alpine region and climate models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Lieberman, R. Non-migrating diurnal tides in the equatorial middle atmosphere. J. Atmos. Sci. 1991, 48, 1112–1123. [Google Scholar] [CrossRef]
- Wild, J.; Gelman, M.; Miller, A.; Chanin, M.L.; Hauchecorne, A.; Keckhut, P.; Farley, R.; Dao, P.; Gobbi, G.P.; Adriani, A.; et al. Comparison OF Stratospheric Temperature from several lidars using NMC and MLS data as transfer reference. Geophys. Res. Lett. 1995, 100, 11105–11111. [Google Scholar] [CrossRef]
- Huang, F.; McPeters, R.; Bhartia, P.; Mayr, H.; Frith, S.; Russell, J., III; Mlynczak, M. Temperature diurnal variations (migrating tides) in the stratosphere and lower mesosphere based on measurements from SABER on TIMED. J. Geophy. Res. 2010, 115. [Google Scholar] [CrossRef]
- Keckhut, P.; Gelman, M.; Wild, J.; Tissot, F.; Miller, A.; Hauchecorne, A.; Chanin, M.; Fishbein, E.; Gille, J.; Russell, J., III; et al. Semidiurnal and diurnal temperature tides (305 km): Climatology and effect on UARS-lidar data comparison. J. Geophys. Res. 1996, 101, 102990310. [Google Scholar] [CrossRef]
- Thompson, D.; Seidel, D.; Randel, W.; Zou, C.Z.; Butler, A.; Mears, C.; Osso, A.; Long, C.; Lin, R. The mystery of recent stratospheric temperature trends. Nature 2012, 491, 692–697. [Google Scholar] [CrossRef]
- Keckhut, P.; Funatsu, B.; Claud, C.; Hauchecorne, A. Tidal effects on stratospheric temperature series derived from successive Advanced Microwave Sounding Units. Q. J. R. Meteorol. Soc. 2015, 141, 477–483. [Google Scholar] [CrossRef]
- Hagan, M.; Forbes, J.M.; Vial, F. On modeling migrating solar tides. Geophys. Res. Lett. 1995, 22, 893–896. [Google Scholar] [CrossRef]
- Hagan, M. GSWM-98: Results for migrating solar tides. J. Geophys. Res. Space Phys. 1999, 104, 6813–6827. [Google Scholar] [CrossRef]
- Raju, U.J.P.; Keckhut, P.; Courcoux, Y.; Marchand, M.; Bekki, S.; Morel, B.; Bencherif, H.; Hauchecorne, A. Nocturnal temperature changes over tropics during CAWSES-III campaign: Comparison with numerical models and satellite data. J. Atmos. Sol. Terr. Phys. 2010, 72, 1171–1179. [Google Scholar] [CrossRef]
- Keckhut, P.; Hauchecorne, A.; Meftah, M.; Khaykin, S.; Claud, C.; Simoneau, P. Middle-Atmosphere Temperature Monitoring Addressed with a Constellation of CubeSats Dedicated to Climate Issues. J. Atmos. Ocean. Technol. 2021, 38, 685–693. [Google Scholar] [CrossRef]
- Baumgarten, K.; Stober, G. On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere. Ann. Geophys. 2019, 37, 581–602. [Google Scholar] [CrossRef]
- Khaykin, S.M.; Pommereau, J.P.; Hauchecorne, A. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations. Atmos. Chem. Phys. 2013, 13, 6391–6402. [Google Scholar] [CrossRef]
- Harper, K.; Uccellini, L.W.; Kalnay, E.; Carey, K.; Morone, L. 50th Anniversary of Operational Numerical Weather Prediction. Bull. Am. Meteorol. Soc. 2007, 88, 639–650. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology; International Geophysics; Academic Press: Cambridge, MA, USA, 2004; Volume 88, pp. 11–12. [Google Scholar] [CrossRef]
- Lorenc, A. Atmospheric modelling, data assimilation and predictability. By Eugenia Kalnay. Cambridge University Press. 2003. pp. xxii + 341. ISBNs 0 521 79179 0, 0 521 79629 6. Q. J. R. Meteorol. Soc. 2003, 129. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lastovika, J. Forcing of the ionosphere by waves from below. J. Atmos. Sol. Terr. Phys. 2006, 68, 479–497. [Google Scholar] [CrossRef]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Mariaccia, A.; Keckhut, P.; Hauchecorne, A.; Claud, C.; Le Pichon, A.; Meftah, M.; Khaykin, S. Assessment of ERA-5 Temperature Variability in the Middle Atmosphere Using Rayleigh LiDAR Measurements between 2005 and 2020. Atmosphere 2022, 13, 242. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Water Vapor Feedback and Global Warming. Ann. Rev. Energy Environ. 2000, 25, 441–475. [Google Scholar] [CrossRef]
- Woolnough, S.J.; Slingo, J.M.; Hoskins, B.J. The Diurnal Cycle of Convection and Atmospheric Tides in an Aquaplanet GCM. J. Atmos. Sci. 2004, 61, 2559–2573. [Google Scholar] [CrossRef]
- Roca, R.; Bergers, J.C.; Brogniez, H.; Capderou, M.; Chambon, P.; Chomette, O.; Cloche, S.; Fiolleau, T.; Jobard, I.; Lemond, J.; et al. On the water and energy cycles in the Tropics. C. R. Geosci. 2010, 342, 390–402. [Google Scholar] [CrossRef]
- Alexander, S.P.; Tsuda, T. Observations of the diurnal tide during seven intensive radiosonde campaigns in Australia and Indonesia. J. Geophys. Res. Atmos. 2008, 113, 581–602. [Google Scholar] [CrossRef]
- Liu, X.M.; Riviere, E.D.; Marecal, V.; Durry, G.; Hamdouni, A.; Arteta, J.; Khaykin, S. Stratospheric water vapour budget and convective overshooting the tropopause: Modelling study from SCOUT-AMMA. Atmos. Chem. Phys. 2010, 10, 8267–8286. [Google Scholar] [CrossRef]
- Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N.; et al. Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project. Surv. Geophys. 2017. [Google Scholar] [CrossRef]
- Kurylo, M. Network for the detection of stratospheric change (NDSC). Remote Sens. Atmos. Chem. 1991, 1491, 168–174. [Google Scholar]
- Hagen, J.; Hocke, K.; Stober, G.; Pfreundschuh, S.; Murk, A.; Kampfer, N. First measurements of tides in the stratosphere and lower mesosphere by ground-based Doppler microwave wind radiometry. Atmos. Chem. Phys. 2020, 20, 2367–2386. [Google Scholar] [CrossRef]
- Stähli, O.; Murk, A.; Kämpfer, N.; Mätzler, C.; Eriksson, P. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause. Atmos. Meas. Tech. 2013, 6, 2477–2494. [Google Scholar] [CrossRef]
- Clancy, R.; Rusch, D.; Callan, M. Temperature minima in the average thermal structure of the middle mesosphere (70–80 km) from analysis of 40- to 92-km SME global temperature profiles. J. Geophys. Res. 1994, 99, 19001–19020. [Google Scholar] [CrossRef]
- Shepherd, M.; Reid, B.; Zhang, S.; Solheim, B.; Shepherd, G.; Wickwar, V.; Herron, J. Retrieval and validation of mesospheric temperatures from Wind Imaging Interferometer observations. J. Geophys. Res. 2001, 106, 24813–24830. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Blanot, L.; Wing, R.; Keckhut, P.; Khaykin, S.; Bertaux, J.L.; Meftah, M.; Claud, C.; Sofieva, V. A new MesosphEO data set of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations. Atmos. Meas. Tech. 2019, 12, 749–761. [Google Scholar] [CrossRef]
- Fussen, D.; Baker, N.; Debosscher, J.; Dekemper, E.; Demoulin, P.; Errera, Q.; Franssens, G.; Mateshvili, N.; Pereira, N.; Pieroux, D.; et al. The ALTIUS atmospheric limb sounder. J. Quant. Spectrosc. Radiat. Transf. 2019, 238, 106542. [Google Scholar] [CrossRef]
- Yost, B. State-of-the-Art Small Spacecraft Technology; Weston, S., Ed.; NASA Center for AeroSpace Information: Hanover, MD, USA; Ames Research Center: Hanover, MD, USA; NASA: San Jose, CA, USA, 2021; Volume NASA. [Google Scholar]
- Meftah, M.; Damé, L.; Keckhut, P.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.; Bertran, E.; Carta, J.P.; Rogers, D.; Abbaki, S.; et al. UVSQ-Sat, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sens. 2020, 12, 92. [Google Scholar] [CrossRef]
- Meftah, M.; Boust, F.; Keckhut, P.; Sarkissian, A.; Boutéraon, T.; Bekki, S.; Damé, L.; Galopeau, P.; Hauchecorne, A.; Dufour, C.; et al. INSPIRE-SAT 7, a Second CubeSat to Measure the Earth’s Energy Budget and to Probe the Ionosphere. Remote Sens. 2022, 14, 186. [Google Scholar] [CrossRef]
- Le Pichon, A.; Assink, J.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C.; Keckhut, P.; Hauchecorne, A.; Rafenacht, R.; Kampfer, N.; et al. Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models. J. Geophys. Res. Atmos. 2015, 120, 8318–8331. [Google Scholar] [CrossRef]
- Rüfenacht, R.; Kämpfer, N.; Murk, A. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech. 2012, 5, 2647–2659. [Google Scholar] [CrossRef]
- Ward, W.E.; Oberheide, J.; Goncharenko, L.P.; Nakamura, T.; Hoffmann, P.; Singer, W.; Chang, L.C.; Du, J.; Wang, D.Y.; Batista, P.; et al. On the consistency of model, ground-based, and satellite observations of tidal signatures: Initial results from the CAWSES tidal campaigns. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keckhut, P.; Lefebvre, T.; Hauchecorne, A.; Meftah, M.; Khaykin, S. Detection of Migrating and Non-Migrating Atmospheric Tides Derived from ERA5 Temperature Meteorological Analyses. Atmosphere 2023, 14, 895. https://doi.org/10.3390/atmos14050895
Keckhut P, Lefebvre T, Hauchecorne A, Meftah M, Khaykin S. Detection of Migrating and Non-Migrating Atmospheric Tides Derived from ERA5 Temperature Meteorological Analyses. Atmosphere. 2023; 14(5):895. https://doi.org/10.3390/atmos14050895
Chicago/Turabian StyleKeckhut, Philippe, Thomas Lefebvre, Alain Hauchecorne, Mustapha Meftah, and Sergey Khaykin. 2023. "Detection of Migrating and Non-Migrating Atmospheric Tides Derived from ERA5 Temperature Meteorological Analyses" Atmosphere 14, no. 5: 895. https://doi.org/10.3390/atmos14050895
APA StyleKeckhut, P., Lefebvre, T., Hauchecorne, A., Meftah, M., & Khaykin, S. (2023). Detection of Migrating and Non-Migrating Atmospheric Tides Derived from ERA5 Temperature Meteorological Analyses. Atmosphere, 14(5), 895. https://doi.org/10.3390/atmos14050895