Sea Ice Extent Prediction with Machine Learning Methods and Subregional Analysis in the Arctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning Methods
2.2. Experiments
2.3. Subregions of the Arctic
3. Results
3.1. Whole-Arctic Experiments
3.2. Arctic Subregion Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serreze, M.C.; Stroeve, J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. R. Soc. A 2015, 373, 20140159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Post, E.; Alley, R.B.; Christensen, T.R.; Macias-Fauria, M.; Forbes, B.C.; Gooseff, M.N.; Iler, A.; Kerby, J.T.; Laidre, K.L.; Mann, M.E.; et al. The polar regions in a 2 °C warmer world. Sci. Adv. 2019, 5, eaaw9883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntington, H.P.; Loring, P.A.; Gannon, G.; Gearheard, S.F.; Gerlach, S.C.; Hamilton, L.C. Staying in place during times of change in Arctic Alaska: The implications of attachment, alternatives, and buffering. Reg. Environ. Chang. 2017, 17, 897–906. [Google Scholar] [CrossRef] [Green Version]
- Laidre, K.L.; Stern, H.; Kovacs, K.M.; Lowry, L.; Moore, S.E.; Regehr, E.V.; Ferguson, S.H.; Wiig, Ø.; Boveng, P.; Angliss, R.P.; et al. Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conserv. Biol. 2020, 34, 630–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistone, K.; Eisenman, I.; Ramanathan, V. Radiative Heating of an Ice-Free Arctic Ocean. Geophys. Res. Lett. 2019, 46, 7474–7480. [Google Scholar] [CrossRef]
- Carrieres, T.; Buehner, M.; Lemieux, J.-F.; Pedersen, L.T. Sea Ice Analysis and Forecasting: Towards an Increased Reliance on Automated Prediction Systems; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Notz, D.; Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 2016, 354, 747–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroeve, J.; Notz, D.; Gerland, S. Arctic sea ice in decline: Faster than forecast. Geophys. Res. Lett. 2018, 45, 9169–9176. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis; Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39, L16502. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.; Gerland, S.; Holland, M.; Hunke, E.; Kwok, R.; Lecomte, O.; Massom, R.; Perovich, D.; Sturm, M. Snow in the changing sea-ice systems. Nat. Clim. Chang. 2018, 8, 946–953. [Google Scholar] [CrossRef]
- Persson, P.O.G. Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Clim. Dyn. 2012, 39, 1349–1371. [Google Scholar] [CrossRef]
- Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data Assimilation in the Geosciences: An Overview of Methods, Issues, and Perspectives. WIREs Clim. Chang. 2018, 9, e535. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Wang, M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 2010, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Andreas, E.L.; Cash, B.A. Convective Heat Transfer over Wavy Surfaces. J. Fluid Mech. 1999, 389, 101–139. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Physics of Climate, 1st ed.; American Institute of Physics: New York, NY, USA, 1992. [Google Scholar]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Frankignoul, C.; Czaja, A.; L’Heveder, B. Air-Sea Feedback in the North Atlantic and Surface Boundary Conditions for Ocean Models. J. Clim. 1997, 10, 2310–2324. [Google Scholar] [CrossRef]
- Maykut, G.A. The surface heat and mass balance. In The Geophysics of Sea Ice; Springer: Berlin/Heidelberg, Germany, 1986; pp. 395–463. [Google Scholar]
- Steele, M.; Morley, R.; Ermold, W. PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean. J. Clim. 2001, 14, 2079–2087. [Google Scholar] [CrossRef]
- Hakkinen, S.; Proshutinsky, A.; Ashik, I. Sea ice drift in the Arctic since the 1950s. Geophys. Res. Lett. 2008, 35, L19704. [Google Scholar] [CrossRef] [Green Version]
- Reid, T.G.R.; Tarantino, P.M. Predicting Arctic sea ice concentration using a support vector machine. Cryosphere 2022, 16, 137–152. [Google Scholar]
Stage | Tested Parameter | Tested Value |
---|---|---|
1 | Simple linear regression SIE | Add this factor or not |
2 | Machine learning methods | Support vector regression, random forecast regression, and multiple linear regression methods |
3 | Reanalysis variables | 3, 4, 5, 6 months of the length of these variables |
4 | Past SIE | 6 or 12 months of past SIE |
5 | Leading time | 1, 2, or 3 months of leading time |
6 | Region | Total Arctic or subregions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Li, K.; Fu, H.; Wu, Y.C.; Huang, Y. Sea Ice Extent Prediction with Machine Learning Methods and Subregional Analysis in the Arctic. Atmosphere 2023, 14, 1023. https://doi.org/10.3390/atmos14061023
Chen S, Li K, Fu H, Wu YC, Huang Y. Sea Ice Extent Prediction with Machine Learning Methods and Subregional Analysis in the Arctic. Atmosphere. 2023; 14(6):1023. https://doi.org/10.3390/atmos14061023
Chicago/Turabian StyleChen, Siwen, Kehan Li, Hongpeng Fu, Ying Cheng Wu, and Yiyi Huang. 2023. "Sea Ice Extent Prediction with Machine Learning Methods and Subregional Analysis in the Arctic" Atmosphere 14, no. 6: 1023. https://doi.org/10.3390/atmos14061023
APA StyleChen, S., Li, K., Fu, H., Wu, Y. C., & Huang, Y. (2023). Sea Ice Extent Prediction with Machine Learning Methods and Subregional Analysis in the Arctic. Atmosphere, 14(6), 1023. https://doi.org/10.3390/atmos14061023