Intraseasonal Variation in the Mesosphere Observed by the Mengcheng Meteor Radar from 2015 to 2020
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fritts, D.C.; Alexander, M.J. Gravity Wave Dynamics and Effects in the Middle Atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Zhang, X.; Palo, S.E.; Russell, J.; Mertens, C.J.; Mlynczak, M. Kelvin Waves in Stratosphere, Mesosphere and Lower Thermosphere Temperatures as Observed by TIMED/SABER during 2002–2006. Earth Planets Space 2009, 61, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Pancheva, D.; Miyoshi, Y.; Mukhtarov, P.; Jin, H.; Shinagawa, H.; Fujiwara, H. Global Response of the Ionosphere to Atmospheric Tides Forced from below: Comparison between COSMIC Measurements and Simulations by Atmosphere-Ionosphere Coupled Model GAIA. J. Geophys. Res. 2012, 117, A07319. [Google Scholar] [CrossRef]
- Lindzen, R.S. Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown. J. Geophys. Res. 1981, 86, 9707. [Google Scholar] [CrossRef] [Green Version]
- Yiğit, E.; Aylward, A.D.; Medvedev, A.S. Parameterization of the Effects of Vertically Propagating Gravity Waves for Thermosphere General Circulation Models: Sensitivity Study. J. Geophys. Res. 2008, 113, D19106. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Liu, H.; Dou, X.; Jia, M. Ionospheric Variability Due to Tides and Quasi-Two Day Wave Interactions. J. Geophys. Res. Space Phys. 2018, 123, 1554–1565. [Google Scholar] [CrossRef]
- Yi, W.; Reid, I.M.; Xue, X.; Murphy, D.J.; Vincent, R.A.; Zou, Z.; Chen, T.; Wang, G.; Dou, X. First Observations of Antarctic Mesospheric Tidal Wind Responses to Recurrent Geomagnetic Activity. Geophys. Res. Lett. 2021, 48, e2020GL089456. [Google Scholar] [CrossRef]
- Andrews, D.G.; Leovy, C.B.; Holton, J.R.; Marshall, J.; Plumb, R.A. Middle Atmosphere Dynamics; Elsevier Science & Technology: Saint Louis, MO, USA, 1987; p. 489. ISBN 978-0-08-051167-2. [Google Scholar]
- Wang, J.; Yi, W.; Wu, J.; Chen, T.; Xue, X.; Zeng, J.; Vincent, R.A.; Reid, I.M.; Batista, P.P.; Buriti, R.A.; et al. Coordinated Observations of Migrating Tides by Multiple Meteor Radars in the Equatorial Mesosphere and Lower Thermosphere. JGR Space Phys. 2022, 127, e2022JA030678. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Eccles, J.V. A Numerical Investigation on Tidal and Gravity Wave Contributions to the Summer Time Na Variations in the Midlatitude E Region. J. Geophys. Res. Space Phys. 2017, 122, 10577–10595. [Google Scholar] [CrossRef]
- Gardner, C.S. Role of Wave-Induced Diffusion and Energy Flux in the Vertical Transport of Atmospheric Constituents in the Mesopause Region. J. Geophys. Res. Atmos. 2018, 123, 6581–6604. [Google Scholar] [CrossRef]
- Garcia, R.R.; Dunkerton, T.J.; Lieberman, R.S.; Vincent, R.A. Climatology of the Semiannual Oscillation of the Tropical Middle Atmosphere. J. Geophys. Res. 1997, 102, 26019–26032. [Google Scholar] [CrossRef]
- Zhou, B.; Xue, X.; Yi, W.; Ye, H.; Zeng, J.; Chen, J.; Wu, J.; Chen, T.; Dou, X. A Comparison of MLT Wind between Meteor Radar Chain and SD-WACCM Results. Earth Planet. Phys. 2022, 6, 451–464. [Google Scholar] [CrossRef]
- Vincent, R.A. Long-Period Motions in the Equatorial Mesosphere. J. Atmos. Terr. Phys. 1993, 55, 1067–1080. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Tsuda, T.; Nakamura, T.; Fukao, S. Wind Velocity and Temperature Fluctuations Due to a 2-Day Wave Observed with Radio Meteor Echoes. J. Geophys. Res. 1996, 101, 9425–9432. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Li, T.; Dou, X.; Wu, Q.; Mlynczak, M.G.; Russell, J.M. Observations of Quasi-Two-Day Wave by TIMED/SABER and TIMED/TIDI: TIMED/SABER and TIDI Observed Qtdw. J. Geophys. Res. Atmos. 2013, 118, 1624–1639. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Liu, H.-L.; Pedatella, N.M.; Dou, X.; Li, T.; Chen, T. The Quasi 2 Day Wave Activities during 2007 Austral Summer Period as Revealed by Whole Atmosphere Community Climate Model: Qtdw in Austral Summer from Waccm. J. Geophys. Res. Space Phys. 2016, 121, 2743–2754. [Google Scholar] [CrossRef]
- Gu, S.; Tang, L.; Hou, X.; Zhao, H.; Teng, C.; Dou, X. Quasi-Two-Day Waves in the Northern Hemisphere Observed by TIMED/SABER Measurements during 2002–2019. JGR Space Phys. 2021, 126, e2020JA028877. [Google Scholar] [CrossRef]
- Eckermann, S.D.; Vincent, R.A. First Observations of Intraseasonal Oscillations in the Equatorial Mesosphere and Lower Thermosphere. Geophys. Res. Lett. 1994, 21, 265–268. [Google Scholar] [CrossRef]
- Eckermann, S.D.; Rajopadhyaya, D.K.; Vincent, R.A. Intraseasonal Wind Variability in the Equatorial Mesosphere and Lower Thermosphere: Long-Term Observations from the Central Pacific. J. Atmos. Sol.-Terr. Phys. 1997, 59, 603–627. [Google Scholar] [CrossRef]
- Yang, C.; Li, T.; Smith, A.K.; Dou, X. The Response of the Southern Hemisphere Middle Atmosphere to the Madden–Julian Oscillation during Austral Winter Using the Specified-Dynamics Whole Atmosphere Community Climate Model. J. Clim. 2017, 30, 8317–8333. [Google Scholar] [CrossRef]
- Yang, C.; Smith, A.K.; Li, T.; Dou, X. The Effect of the Madden-Julian Oscillation on the Mesospheric Migrating Diurnal Tide: A Study Using SD-WACCM. Geophys. Res. Lett. 2018, 45, 5105–5114. [Google Scholar] [CrossRef]
- Yang, C.; Li, T.; Xue, X.; Gu, S.; Yu, C.; Dou, X. Response of the Northern Stratosphere to the Madden-Julian Oscillation during Boreal Winter. J. Geophys. Res. Atmos. 2019, 124, 5314–5331. [Google Scholar] [CrossRef]
- Dunkerton, T. On the Role of the Kelvin Wave in the Westerly Phase of the Semiannual Zonal Wind Oscillation. J. Atmos. Sci. 1979, 36, 32–41. [Google Scholar] [CrossRef]
- Dunkerton, T.J. The Role of Gravity Waves in the Quasi-Biennial Oscillation. J. Geophys. Res. 1997, 102, 26053–26076. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Holton, J.R. A Theory of the Quasi-Biennial Oscillation. J. Atmos. Sci. 1968, 25, 1095–1107. [Google Scholar] [CrossRef]
- Dunkerton, T.J. Wave Transience in a Compressible Atmosphere. Part III: The Saturation of Internal Gravity Waves in the Mesophere. J. Atmos. Sci. 1982, 39, 1042–1051. [Google Scholar] [CrossRef]
- Hirota, I. Equatorial Waves in the Upper Stratosphere and Mesosphere in Relation to the Semiannual Oscillation of the Zonal Wind. J. Atmos. Sci. 1978, 35, 714–722. [Google Scholar] [CrossRef]
- Lieberman, R.S. Intraseasonal Variability of High-Resolution Doppler Imager Winds in the Equatorial Mesosphere and Lower Thermosphere. J. Geophys. Res. 1998, 103, 11221–11228. [Google Scholar] [CrossRef]
- Huang, F.T. Seasonal Behavior of the Semidiurnal and Diurnal Tides, and Mean Flows at 95 km, Based on Measurements from the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res. 2003, 108, 4360. [Google Scholar] [CrossRef]
- Sassi, F.; McCormack, J.P.; McDonald, S.E. Whole Atmosphere Coupling on Intraseasonal and Interseasonal Time Scales: A Potential Source of Increased Predictive Capability. Radio Sci. 2019, 54, 913–933. [Google Scholar] [CrossRef] [Green Version]
- Pancheva, D. Intra-Seasonal Oscillations Observed in the MLT Region above UK (52° N, 2° W) and ESRANGE (68° N, 21° E). Geophys. Res. Lett. 2003, 30, 2084. [Google Scholar] [CrossRef]
- Mayr, H.G.; Mengel, J.G.; Drob, D.P.; Porter, H.S.; Chan, K.L. Intraseasonal Oscillations in the Middle Atmosphere Forced by Gravity Waves. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1187–1203. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar] [CrossRef]
- Tian, B.; Ao, C.O.; Waliser, D.E.; Fetzer, E.J.; Mannucci, A.J.; Teixeira, J. Intraseasonal Temperature Variability in the Upper Troposphere and Lower Stratosphere from the GPS Radio Occultation Measurements: Utls Temperature Mjo Signal from Gps Ro. J. Geophys. Res. 2012, 117, D15110. [Google Scholar] [CrossRef]
- Zhang, C. Madden-Julian Oscillation: Madden-Julian Oscillation. Rev. Geophys. 2005, 43, RG2003. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, F.; Hagan, M.E.; Zhao, Y. Evidence of Tropospheric 90 Day Oscillations in the Thermosphere. Geophys. Res. Lett. 2017, 44, 10125–10133. [Google Scholar] [CrossRef]
- Gasperini, F.; Liu, H.; McInerney, J. Preliminary Evidence of Madden-Julian Oscillation Effects on Ultrafast Tropical Waves in the Thermosphere. JGR Space Phys. 2020, 125, e2019JA027649. [Google Scholar] [CrossRef]
- Hagan, M.E. Comparative Effects of Migrating Solar Sources on Tidal Signatures in the Middle and Upper Atmosphere. J. Geophys. Res. 1996, 101, 21213–21222. [Google Scholar] [CrossRef]
- Reigber, C.; Balmino, G.; Schwintzer, P.; Biancale, R.; Bode, A.; Lemoine, J.-M.; König, R.; Loyer, S.; Neumayer, H.; Marty, J.-C.; et al. A High-Quality Global Gravity Field Model from CHAMP GPS Tracking Data and Accelerometry (EIGEN-1S): A Global Gravity Field Model. Geophys. Res. Lett. 2002, 29, 37-1–37-4. [Google Scholar] [CrossRef] [Green Version]
- Rebhan, H.; Johannessen, J.; Aguirre, M.; Tobias, A. The ESA Gravity Field and Steady-State Ocean Circulation Explorer Mission: Impact on Solid Earth Physics. In Towards an Integrated Global Geodetic Observing System (IGGOS); Rummel, R., Drewes, H., Bosch, W., Hornik, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 225–228. [Google Scholar]
- Yi, W.; Xue, X.; Chen, J.; Chen, T.; Li, N. Quasi-90-Day Oscillation Observed in the MLT Region at Low Latitudes from the Kunming Meteor Radar and SABER. Earth Planet. Phys. 2019, 3, 136–146. [Google Scholar] [CrossRef]
- Yi, W.; Xue, X.; Chen, J.; Dou, X.; Chen, T.; Li, N. Estimation of Mesopause Temperatures at Low Latitudes Using the Kunming Meteor Radar: Kunming Meteor Radar Temperature. Radio Sci. 2016, 51, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Holdsworth, D.A.; Reid, I.M.; Cervera, M.A. Buckland Park All-Sky Interferometric Meteor Radar: Buckland Park Meteor Radar. Radio Sci. 2004, 39, RS5009. [Google Scholar] [CrossRef]
- Lee, H.-T.; NOAA CDR Program. NOAA Climate Data Record (CDR) of Daily Outgoing Longwave Radiation (OLR); Version 1.2; NOAA National Climatic Data Center: Asheville, NC, USA, 2014. [Google Scholar] [CrossRef]
- Reid, I.M.; McIntosh, D.L.; Murphy, D.J.; Vincent, R.A. Mesospheric Radar Wind Comparisons at High and Middle Southern Latitudes. Earth Planets Space 2018, 70, 84. [Google Scholar] [CrossRef]
- Zeng, J.; Yi, W.; Xue, X.; Reid, I.; Hao, X.; Li, N.; Chen, J.; Chen, T.; Dou, X. Comparison between the Mesospheric Winds Observed by Two Collocated Meteor Radars at Low Latitudes. Remote Sens. 2022, 14, 2354. [Google Scholar] [CrossRef]
- Lovell, A.C.B.; Banwell, C.J.; Clegg, J.A. Radio Echo Observations of the Giacobinids Meteors, 1946. Mon. Not. R. Astron. Soc. 1947, 107, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Hey, J.S.; Stewart, G.S. Radar Observations of Meteors. Proc. Phys. Soc. 1947, 59, 858–883. [Google Scholar] [CrossRef]
- Millman, P.M.; McKinley, D.W.R. A Note on Four Complex Meteor Radar Echoes (with Plates IV and V). J. R. Astron. Soc. Can. 1948, 42, 121. [Google Scholar]
- Hawkins, G.S. A Radio Echo Survey of Sporadic Meteor Radiants. Mon. Not. R. Astron. Soc. 1956, 116, 92. [Google Scholar] [CrossRef] [Green Version]
- Stober, G.; Jacobi, C.; Fröhlich, K.; Oberheide, J. Meteor Radar Temperatures over Collm (51.3° N, 13° E). Adv. Space Res. 2008, 42, 1253–1258. [Google Scholar] [CrossRef]
- Yi, W.; Xue, X.; Reid, I.M.; Murphy, D.J.; Hall, C.M.; Tsutsumi, M.; Ning, B.; Li, G.; Yang, G.; Li, N.; et al. Climatology of Interhemispheric Mesopause Temperatures Using the High-Latitude and Middle-Latitude Meteor Radars. Geophys. Res. Atmos. 2021, 126, e2020JD034301. [Google Scholar] [CrossRef]
- Hocking, W.K.; Fuller, B.; Vandepeer, B. Real-Time Determination of Meteor-Related Parameters Utilizing Modern Digital Technology. J. Atmos. Sol.-Terr. Phys. 2001, 63, 155–169. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Huang, K.M.; Liu, A.Z.; Zhang, S.D.; Yi, F.; Huang, C.M.; Gan, Q.; Gong, Y.; Zhang, Y.H.; Wang, R. Observational Evidence of Quasi-27-Day Oscillation Propagating from the Lower Atmosphere to the Mesosphere over 20° N. Ann. Geophys. 2015, 33, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Hao, X.; Qiu, S.; Cheng, W.; Yang, C.; Wu, J. Intraseasonal Variation in the Mesosphere Observed by the Mengcheng Meteor Radar from 2015 to 2020. Atmosphere 2023, 14, 1034. https://doi.org/10.3390/atmos14061034
Tang Y, Hao X, Qiu S, Cheng W, Yang C, Wu J. Intraseasonal Variation in the Mesosphere Observed by the Mengcheng Meteor Radar from 2015 to 2020. Atmosphere. 2023; 14(6):1034. https://doi.org/10.3390/atmos14061034
Chicago/Turabian StyleTang, Yihuan, Xiaojing Hao, Shican Qiu, Wenhan Cheng, Chengyun Yang, and Jianfei Wu. 2023. "Intraseasonal Variation in the Mesosphere Observed by the Mengcheng Meteor Radar from 2015 to 2020" Atmosphere 14, no. 6: 1034. https://doi.org/10.3390/atmos14061034
APA StyleTang, Y., Hao, X., Qiu, S., Cheng, W., Yang, C., & Wu, J. (2023). Intraseasonal Variation in the Mesosphere Observed by the Mengcheng Meteor Radar from 2015 to 2020. Atmosphere, 14(6), 1034. https://doi.org/10.3390/atmos14061034