Eight-Day Typhoon Quantitative Precipitation Forecasts in Taiwan by the 2.5 km CReSS Model, Part II: Reduced Control of Track Errors on Rainfall Prediction Quality for Typhoons Associated with Southwesterly Flow
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observational Data
2.2. The CReSS Model and Forecast Data
2.3. Typhoon Cases and Target Days
2.4. Verification of Model QPFs
3. Correlation between Track Error and Model Rainfall Quality
4. Examples of Typhoon Associated with Southwesterly Flow
4.1. TY Talim (2012)
Typhoon | Talim | Trami | Kong-Rey | Nepartak | |||||
---|---|---|---|---|---|---|---|---|---|
Target Day | 20 June 2012 | 21 August 2013 | 29 August 2013 | 8 July 2016 | |||||
Peak Rainfall | 415 | 638 | 426 | 478 | |||||
SSS/TE | SSS | TE | SSS | TE | SSS | TE | SSS | TE | |
Forecast range | Day 1 | 0.91 | 22 | 0.91 | 22 | 0.70 | 45 | 0.76 | 23 |
Day 2 | 0.79 | 126 | 0.93 | 70 | 0.70 | 46 | 0.59 | 78 | |
Day 3 | 0.30 | 408 | 0.84 | 175 | 0.34 | 392 | 0.43 | 168 | |
Day 4 | 0.38 | 435 | 0.40 | 261 | 0.31 | 321 | 0.14 | 346 | |
Day 5 | 0.68 | # | 0.02 | 723 | 0.00 | 717 | 0.19 | 359 | |
Day 6 | 0.75 | # | 0.61 | 553 | 0.07 | 465 | 0.05 | 884 | |
Day 7 | 0.74 | - | 0.41 | 461 | 0.79 | 358 | 0.27 | 341 | |
Day 8 | 0.77 | - | 0.80 | 332 | 0.12 | - | 0.31 | 408 |
4.2. TY Trami (2013)
4.3. TY Kong-Rey (2013)
4.4. TY Nepartak (2016)
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.-T. Track, intensity, structure, wind and precipitation characteristics of typhoons affecting Taiwan. In National Science Council of Taiwan Disaster Mitigation Research Report 80-73; NSC 80-04140-P052-02B; Central Weather Bureau: Taipei, Taiwan, 1989; 285p. (In Chinese) [Google Scholar]
- Kuo, Y.-H.; Chen, G.T.-J. The Taiwan Area Mesoscale Experiment (TAMEX): An overview. Bull. Am. Meteorol. Soc. 1990, 71, 488–503. [Google Scholar] [CrossRef]
- Wu, C.-C.; Kuo, Y.-H. Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Am. Meteorol. Soc. 1999, 80, 67–80. [Google Scholar] [CrossRef]
- Fang, X.; Kuo, Y.-H.; Wang, A. The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Weather Forecast. 2011, 26, 613–633. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Kuo, H.-C.; Chen, Y.-H.; Chen, S.-H.; Tsuboki, K. A decade after Typhoon Morakot (2009): What have we learned about its physics and predictability? Weather Forecast. 2022, 37, 2161–2181. [Google Scholar] [CrossRef]
- Li, Q.; Jia, H.; Qiu, Q.; Lu, Y.; Zhang, J.; Mao, J.; Fan, W.; Huang, M. Typhoon-induced fragility analysis of transmission towers in Ningbo area considering the effects of long-term corrosion. Appl. Sci. 2022, 12, 4774. [Google Scholar] [CrossRef]
- Golding, B.W. Quantitative precipitation forecasting in the UK. J. Hydrol. 2000, 239, 286–305. [Google Scholar] [CrossRef]
- Cuo, L.; Pagano, T.C.; Wang, Q.J. A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydrometeorol. 2011, 12, 713–728. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef]
- Mullen, S.L.; Buizza, R. Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system. Mon. Weather Rev. 2001, 129, 638–663. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Carbone, R.E. Improving quantitative precipitation forecasts in the warm season. A USWRP research and development strategy. Bull. Am. Meteorol. Soc. 2004, 85, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Eckel, F.A.; Mass, C.F. Aspects of effective mesoscale, short-range ensemble forecasting. Weather Forecast. 2005, 20, 328–350. [Google Scholar] [CrossRef]
- Wang, C.-C. The more rain, the better the model performs—The dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Mon. Weather Rev. 2015, 143, 1723–1748. [Google Scholar] [CrossRef]
- Chang, C.-P.; Yeh, T.-C.; Chen, J.-M. Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Weather Rev. 1993, 121, 734–752. [Google Scholar] [CrossRef]
- Cheung, K.K.W.; Huang, L.-R.; Lee, C.-S. Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci. 2008, 8, 1463–1474. [Google Scholar] [CrossRef]
- Su, S.-H.; Kuo, H.-C.; Hsu, L.-H.; Yang, Y.-T. Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. J. Meteorol. Soc. Jpn. 2012, 90, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-S.; Huang, L.-R.; Shen, H.-S.; Wang, S.-T. A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards 2006, 37, 87–105. [Google Scholar] [CrossRef]
- Lee, C.-S.; Huang, L.-R.; Chen, D.Y.-C. The modification of the typhoon rainfall climatology model in Taiwan. Nat. Hazards Earth Syst. Sci. 2013, 13, 65–74. [Google Scholar] [CrossRef]
- Hong, J.-S.; Fong, C.-T.; Hsiao, L.-F.; Yu, Y.-C.; Tzeng, C.-Y. Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Weather Forecast. 2015, 30, 217–237. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Epstein, E.S. Stochastic dynamic prediction. Tellus 1969, 21, 739–759. [Google Scholar] [CrossRef]
- Fang, X.; Kuo, Y.-H. Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Weather Rev. 2013, 141, 3908–3932. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Kuo, H.-C.; Yeh, T.-C.; Chung, C.-H.; Chen, Y.-H.; Huang, S.-Y.; Wang, Y.-W.; Liu, C.-H. High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol. 2013, 506, 26–41. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chang, C.-S.; Wang, Y.-W.; Huang, C.-C.; Wang, S.-C.; Chen, Y.-S.; Tsuboki, K.; Huang, S.-Y.; Chen, S.-H.; Chuang, P.-Y.; et al. Evaluating quantitative precipitation forecasts using the 2.5 km CReSS Model for typhoons in Taiwan: An update through the 2015 season. Atmosphere 2021, 12, 1501. [Google Scholar] [CrossRef]
- Yang, M.-J.; Braun, S.A.; Chen, D.-S. Water budget of Typhoon Nari (2001). Mon. Weather Rev. 2011, 139, 3809–3828. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Hsu, H.-M.; Sheng, Y.-F.; Kuo, C.-H.; Liou, Y.-A. Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009) over southern Taiwan. Atmos. Chem. Phys. 2011, 11, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.-D.; Xue, M.; Ran, L.; Leslie, L.-M. High-resolution modeling of Typhoon Morakot (2009): Vortex Rossby waves and their role in extreme precipitation over Taiwan. J. Atmos. Sci. 2013, 70, 163–186. [Google Scholar] [CrossRef]
- Huang, H.-L.; Yang, M.-J.; Sui, C.-H. Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci. 2014, 71, 112–129. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.-L.; Yau, M.K. A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Weather Rev. 1999, 127, 2597–2616. [Google Scholar] [CrossRef]
- Braun, S.A. A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Weather Rev. 2002, 130, 1573–1592. [Google Scholar] [CrossRef]
- Clark, A.J.; Gallus, W.A.; Xue, M., Jr.; Kong, F. A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Weather Forecast. 2009, 24, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Gentry, M.S.; Lackmann, G.M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 2010, 138, 688–704. [Google Scholar] [CrossRef] [Green Version]
- Tsuboki, K.; Sakakibara, A. Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing: 4th International Symposium. In Lecture Notes in Computer Science; Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2327, pp. 243–259. [Google Scholar]
- Tsuboki, K.; Sakakibara, A. Numerical Prediction of High-Impact Weather Systems: The Textbook for the Seventeenth IHP Training Course in 2007; Hydrospheric Atmospheric Research Center, Nagoya University: Nagoya, Japan; UNESCO: Paris, France, 2007; 273p. [Google Scholar]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Weather Forecast. 2016, 31, 151–172. [Google Scholar] [CrossRef]
- Mittermaier, M.P. Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 2007, 133, 1487–1500. [Google Scholar] [CrossRef]
- Lu, C.; Yuan, H.; Schwartz, B.E.; Benjamin, S. Short-range numerical weather prediction using time-lagged ensembles. Weather Forecast. 2007, 22, 580–595. [Google Scholar] [CrossRef]
- Yuan, H.; McGinley, J.A.; Schultz, P.J.; Anderson, C.J.; Lu, C. Short-range precipitation forecasts from time-lagged multimodel ensembles during the HMT-West-2006 campaign. J. Hydrometeorol. 2008, 9, 477–491. [Google Scholar] [CrossRef]
- Trilaksono, N.J.; Otsuka, S.; Yoden, S. A time-lagged ensemble simulation on the modulation of precipitation over West Java in January–February 2007. Mon. Weather Rev. 2012, 140, 601–616. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Wang, C.-C. Developing objective guidance for the quality of quantitative precipitation forecasts of westward-moving typhoons affecting Taiwan through machine learning. Atmos. Sci. 2022, 50, 78–125, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.-C.; Chen, S.-H.; Chen, Y.-H.; Kuo, H.-C.; Ruppert, J.H., Jr.; Tsuboki, K. Cloud-resolving time-lagged rainfall ensemble forecasts for typhoons in Taiwan: Examples of Saola (2012), Soulik (2013), and Soudelor (2015). Weather Clim. Extrem. 2023, 40, 100555. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, S.-H.; Chuang, P.-Y.; Chang, C.-S. Quantitative precipitation forecasts using numerical models: The example of Taiwan. In Numerical Weather Prediction: East Asian Perspectives; Park, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; in press. [Google Scholar]
- Wang, C.-C.; Chen, S.-H.; Tsuboki, K.; Huang, S.-Y.; Chang, C.-S. Application of time-lagged ensemble quantitative precipitation forecasts for Typhoon Morakot (2009) in Taiwan by a cloud-resolving model. Atmosphere 2022, 13, 585. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chien, C.-W.; Soong, W.-K. Evaluation of eight-day typhoon quantitative precipitation forecasts in Taiwan by the 2.5-km CReSS model: Overall performance during 2012–2016 and impact of domain size. J. Hydromet. 2023; under review. [Google Scholar]
- Wang, C.-C.; Chien, C.-W.; Chen, S.-H. Evaluation and characteristics of typhoon quantitative precipitation forecasts in Taiwan by the 2.5-km CReSS model at short and medium ranges. In Proceedings of the 2018 VOTE Meteorology Workshop, Taipei, Taiwan, 5–8 November 2018; p. 15. [Google Scholar]
- Hsu, J. ARMTS up and running in Taiwan. Väisälä News 1998, 146, 24–26. [Google Scholar]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Cotton, W.R.; Tripoli, G.J.; Rauber, R.M.; Mulvihill, E.A. Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Clim. Appl. Meteorol. 1986, 25, 1658–1680. [Google Scholar] [CrossRef]
- Murakami, M. Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteorol. Soc. Jpn. 1990, 68, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Ikawa, M.; Saito, K. Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 1991, 28, 238. [Google Scholar]
- Murakami, M.; Clark, T.L.; Hall, W.D. Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulation of mixed layer development and convective snow cloud formation. J. Meteorol. Soc. Jpn. 1994, 72, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Kondo, J. Heat balance of the China Sea during the air mass transformation experiment. J. Meteorol. Soc. Jpn. 1976, 54, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.F.; Tiedtke, M.; Geleyn, J.F. A short history of the operational PBL parameterization at ECMWF. In Workshop on Planetary Boundary Layer Parameterization; ECMWF: Reading, UK, 1982; pp. 59–79. [Google Scholar]
- Segami, A.; Kurihara, K.; Nakamura, H.; Ueno, M.; Takano, I.; Tatsumi, Y. Operational mesoscale weather prediction with Japan Spectral Model. J. Meteorol. Soc. Jpn. 1989, 67, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Baker, W.E. Global numerical weather prediction at the National Meteorological Center. Bull. Am. Meteorol. Soc. 1990, 71, 1410–1428. [Google Scholar] [CrossRef]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.S.; Lord, S. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.E.; Damrath, U.; Wergen, W.; Baldwin, M.E. The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models. Bull. Am. Meteorol. Soc. 2003, 84, 481–492. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; 704p. [Google Scholar]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; Wiley and Sons: Hoboken, NY, USA, 2003; 240p. [Google Scholar]
- Wang, C.-C.; Chen, Y.-H.; Li, M.-C.; Kuo, H.-C.; Tsuboki, K. On the separation of upper and low-level centres of tropical storm Kong-Rey (2013) near Taiwan in association with asymmetric latent heating. Q. J. R. Meteorol. Soc. 2021, 147, 1135–1149. [Google Scholar] [CrossRef]
- Chien, F.-C.; Liu, Y.-C.; Lee, C.-S. Heavy rainfall and southerly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteorol. Soc. Jpn. 2008, 86, 17–44. [Google Scholar] [CrossRef] [Green Version]
- Chien, F.-C.; Kuo, H.-C. On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res. 2011, 116, D05104. [Google Scholar] [CrossRef] [Green Version]
Grid spacing * (km; x, y, z) | 2.5 × 2.5 × 0.2−0.663 (0.5) |
Grid dimension | 744 × 544 × 40 |
Domain size (km) | 1860 × 1360 × 20 |
Forecast range and frequency | 192 h and once daily (at 0000 UTC) |
IC/BCs (including SST) | NCEP GFS analyses and forecasts (1° × 1°, 26 levels) |
Topography data | Real at (1/120)° resolution |
Cloud microphysics | Bulk cold-rain scheme (six species) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Soong, W.-K.; Chien, C.-W.; Chang, C.-S.; Huang, S.-Y. Eight-Day Typhoon Quantitative Precipitation Forecasts in Taiwan by the 2.5 km CReSS Model, Part II: Reduced Control of Track Errors on Rainfall Prediction Quality for Typhoons Associated with Southwesterly Flow. Atmosphere 2023, 14, 1047. https://doi.org/10.3390/atmos14061047
Wang C-C, Soong W-K, Chien C-W, Chang C-S, Huang S-Y. Eight-Day Typhoon Quantitative Precipitation Forecasts in Taiwan by the 2.5 km CReSS Model, Part II: Reduced Control of Track Errors on Rainfall Prediction Quality for Typhoons Associated with Southwesterly Flow. Atmosphere. 2023; 14(6):1047. https://doi.org/10.3390/atmos14061047
Chicago/Turabian StyleWang, Chung-Chieh, Wei-Kuo Soong, Chih-Wei Chien, Chih-Sheng Chang, and Shin-Yi Huang. 2023. "Eight-Day Typhoon Quantitative Precipitation Forecasts in Taiwan by the 2.5 km CReSS Model, Part II: Reduced Control of Track Errors on Rainfall Prediction Quality for Typhoons Associated with Southwesterly Flow" Atmosphere 14, no. 6: 1047. https://doi.org/10.3390/atmos14061047
APA StyleWang, C. -C., Soong, W. -K., Chien, C. -W., Chang, C. -S., & Huang, S. -Y. (2023). Eight-Day Typhoon Quantitative Precipitation Forecasts in Taiwan by the 2.5 km CReSS Model, Part II: Reduced Control of Track Errors on Rainfall Prediction Quality for Typhoons Associated with Southwesterly Flow. Atmosphere, 14(6), 1047. https://doi.org/10.3390/atmos14061047