Landscape as a Palimpsest for Energy Transition: Correlations between the Spatial Development of Energy-Production Infrastructure and Climate-Mitigation Goals
Abstract
:1. Introduction
1.1. Landscapes from Energy Production
1.2. Energy Policies
1.3. Spatiality and Procedural Implications
1.4. Literature Overview
2. Materials and Methods
- Identification of sources and quantitative calculation: in this stage, renewable energy sources are identified for the definition of the energy-transition potential in the municipal territory of Ravenna, specifically photovoltaic, wind-turbine, and biomass production, and the calculation of tonnes of CO2 to be counterbalanced by energy production from identified renewable sources;
- Spatial conversion: a transformation from quantitative to qualitative–spatial data is carried out, corresponding to the theoretical extension of the different energy sources and their respective technological systems considered;
- Identification of location criteria and estimation of effect: the choice of places and their propensity to accommodate energy-production facilities is made, and the potential effect associated with each source is estimated;
- Energy-mix hypothesis: taking into account the data and potential locations extrapolated from the previous steps, a mixed-energy-production strategy is projected that includes all studied energy sources and projects a hybrid scenario capable of satisfying the predetermined CO2 reduction targets.
2.1. Identification of Sources and Quantitative Calculation
2.2. Spatial Conversion
2.3. Identification of Location Criteria and Estimation of Effect
3. Results
3.1. Photovoltaic 2030–2050
3.1.1. Photovoltaic Action I (PA I)—Buildings Coverage
3.1.2. Photovoltaic Action II (PA II)—Quarries and Mines Coverage
3.1.3. Photovoltaic Action III (PA III)—Coverage of New Infrastructure Buffer Strips
3.2. Biomass Production 2030–2050
3.2.1. Biomass Action I (BA I)—Agricultural Areas with Low Organic Carbon Content
3.2.2. Biomass Action II (BA II)—Agricultural Areas with Low–Medium Organic Carbon Content
3.2.3. Biomass Action III (BA III)—Agricultural Areas with Medium Organic Carbon Content
3.3. Wind-Turbine 2030–2050
3.3.1. Wind-Turbine Action I (WA I)—Offshore Platform Reuse
3.3.2. Wind-Turbine Action II (WA II)—Wind Farm over 15 km
3.3.3. Wind-Turbine Action III (WA III)—Wind Farm along Pipelines over 15 km
3.4. Energy-Mix Hypothesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gellert, P.K.; Lynch, B.D. Mega-projects as displacements. Int. Soc. Sci. J. 2003, 55, 15–25. [Google Scholar] [CrossRef]
- Lin, Y.; Zhaoyuan, Y.; Jing, Q.; Muhammadjon, K.; Chaoliang, C.; Xiuwei, X. Evaluation of the heterogeneity in the intensity of human interference on urbanized coastal ecosystems: Shenzhen (China) as a case study. Ecol. Indic. 2021, 122, 107243. [Google Scholar] [CrossRef]
- Bélanger, P. Landscape as Infrastructure: A Base Primer, 1st ed.; Routledge: New York, NY, USA, 2017; pp. 116–155. ISBN 978-1-138-64391-8. [Google Scholar]
- Fulmer, J.E. What in the world is infrastructure? Infrastruct. Invest. 2009, 1, 30–32. [Google Scholar]
- Corboz, A. The land as palimpsest. SAGE J. 1983, 31, 12–34. [Google Scholar] [CrossRef]
- Pasini, R. Nature, dwelling—A needed new balance. Rev. Nodo 2020, 15, 8–19. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2005, 519, 171–180. [Google Scholar] [CrossRef]
- Wuebben, D.L. Power-Lined: Electricity, Landscape, and the American Mind, 1st ed.; University of Nebraska Press: Lincoln, NE, USA, 2019; pp. 131–168. ISBN 978-1-4962-0366-3. [Google Scholar]
- De Waal, R.M.; Stremke, S. Energy Transition: Missed Opportunities and Emerging Challenges for Landscape Planning and Designing. Sustainability 2014, 6, 4386–4415. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN (accessed on 15 January 2020).
- Ministry of Economic Development; Ministry of the Environment and Protection of Land and Sea; Ministry of Infrastructure and Transport. Piano Nazionale Integrato per l’Energia e il Clima. 2019. Available online: https://www.mase.gov.it/sites/default/files/archivio/pniec_finale_17012020.pdf (accessed on 10 March 2023).
- Ministry of the Environment and Protection of Land and Sea; Ministry of Economic Develompment; Ministry of Infrastructure and Transport; Ministry of Agriculture, Food Sovereignty and Forestry. Strategia Italiana di Lungo Termine sulla Riduzione delle Emissioni dei Gas a Effetto Serra. 2021. Available online: https://www.mase.gov.it/sites/default/files/lts_gennaio_2021.pdf (accessed on 10 March 2023).
- Marquard, E.; Bartke, S.; Gifreu i Font, J.; Humer, A.; Jonkman, A.; Jürgenson, E.; Marot, N.; Poelmans, L.; Repe, B.; Rybski, R.; et al. Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context. Sustainability 2020, 12, 8269. [Google Scholar] [CrossRef]
- Ahern, J. Spatial concepts, planning strategies and future scenarios—A framework method for integrating landscape ecology and landscape planning. In Landscape Ecological Analysis—Issues and Applications; Klopatek, J., Gardner, R., Eds.; Springer: New York, NY, USA, 1999; pp. 175–201. [Google Scholar] [CrossRef]
- Calvert, K.; Smit, E.; Wassmansdorf, D.; Smithers, J. Energy transition, rural transformation and local land-use planning: Insights from Ontario, Canada. SAGE J. 2022, 5, 1035–1055. [Google Scholar] [CrossRef]
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščaj, B.; Walzer, C. Renewable energies and ecosystem service impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- Howarda, D.C.; Wadswortha, R.A.; Whitaker, J.A.; Hughes, N.; Buncec, R.G.H. The impact of sustainable energy production on land use in Britain through to 2050. Land Use Policy 2009, 26, S284–S292. [Google Scholar] [CrossRef]
- Trainor, A.M.; McDonald, R.I.; Fargione, J. Energy Sprawl Is the Largest Driver of Land Use Change in United States. PLoS ONE 2016, 11, e0162269. [Google Scholar] [CrossRef] [PubMed]
- Terna Driving Energy. Italy Consumption Energy. Available online: https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche (accessed on 15 March 2023).
- Ginelli, E.; Daglio, L. Infrastructures for renewable energies in landscape. Design tools and innovation trends. TECHNE J. Technol. Archit. Environ. 2016, 11, 119–126. [Google Scholar] [CrossRef]
- Treu, M.C. Energy: Territory and new landscapes scenarios. City Territ. Archit. 2018, 5, 14. [Google Scholar] [CrossRef]
- European Commission. Clean Energy for All Europeans; Publications Office of the European Union: Luxemburg, 2019; Available online: https://data.europa.eu/doi/10.2833/9937 (accessed on 10 March 2023).
- Sijmons, D.; Hugtenburg, J.; Feddes, F.; van Hoorn, A. Landscape and Energy: Designing Transition; Nai Uitgevers Pub: Rotterdam, The Netherlands, 2004. [Google Scholar]
- Li, T.; Liu, P.; Li, Z. Impacts of Low-Carbon Targets and Hydrogen Production Alternatives on Energy Supply System Transition: An Infrastructure-Based Optimization Approach and a Case Study of China. Processes 2021, 9, 160. [Google Scholar] [CrossRef]
- Frombo, F.; Minciardi, R.; Robba, M.; Scaile, R. A decision support system for planning biomass-based energy production. Energy 2009, 34, 362–369. [Google Scholar] [CrossRef]
- Jay, S. Planners to the rescue: Spatial planning facilitating the development of offshore wind energy. Mar. Pollut. Bull. 2010, 60, 493–499. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J.; Montesdeoca, N.G. Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy 2018, 143, 91–103. [Google Scholar] [CrossRef]
- Dìaz-Cuevas, P. GIS-based methodology for evaluating the wind-energy potential of territories: A case study from Andalusia (Spain). Energies 2018, 11, 2789. [Google Scholar] [CrossRef]
- Marques-Perez, I.; Guaita-Pradas, I.; Gallego, A.; Segura, B. Territorial planning for photovoltaic power plants using an outranking approach and GIS. J. Clean. Prod. 2020, 257, 120602. [Google Scholar] [CrossRef]
- Colafranceschi, D.; Sala, P.; Manfredi, F. Nature of the Wind, the Culture of the Landscape: Toward an Energy Sustainability Project in Catalonia. Sustainability 2021, 13, 7110. [Google Scholar] [CrossRef]
- Burinskiene, M.; Rudzkiene, V. Future insights, scenarios and expert method application in sustainable territorial planning. Technol. Econ. Dev. Econ. 2009, 15, 10–25. [Google Scholar] [CrossRef]
- Belmonte, S.; Núñez, V.; Viramonte, J.G.; Franco, J. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning. Renew. Sustain. Energy Rev. 2009, 13, 1475–1484. [Google Scholar] [CrossRef]
- De Pascali, P.; Bagaini, A. Energy transition and urban planning for local development. A critical review of the evolution of integrated spatial and energy planning. Energies 2018, 12, 35. [Google Scholar] [CrossRef]
- Bagliani, M.; Dansero, E.; Puttilli, M. Territory and energy sustainability: The challenge of renewable energy sources. J. Environ. Plan. Manag. 2010, 53, 457–472. [Google Scholar] [CrossRef]
- Santana-Sarmiento, F.; Velázquez-Medina, S. Development of a territorial planning model of wind and photovoltaic energy plants for self-consumption as a low carbon strategy. Complexity 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- Cherix, G.; Capezzali, M.; Rager, J. Territorial energy systems: A methodological approach and case study. In Proceedings of the 10th Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES 2015), Dubrovnik, Croatia, 27 September–2 October 2015; pp. 1–20. [Google Scholar]
- Zanon, B.; Verones, S. Climate change, urban energy and planning practices: Italian experiences of innovation in land management tools. Land Use Policy 2013, 32, 343–355. [Google Scholar] [CrossRef]
- Novarina, G.; Seigneuret, N. Territorial energy transition strategies: New models for cooperation between actors and resource management? In Local Resources, Territorial Development and Well-Being; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 121–142. [Google Scholar] [CrossRef]
- Song, S.; Li, T.; Liu, P.; Li, Z. The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China. Energy 2022, 238, 122037. [Google Scholar] [CrossRef]
- Peterson, G.D.; Cumming, G.S.; Carpenter, S.R. Scenario Planning: A Tool for Conservation in an Uncertain World. Conserv. Biol. 2020, 17, 358–366. [Google Scholar] [CrossRef]
- Strelkovskii, N.; Komendantova, N.; Sizov, S.; Rovenskaya, E. Building plausible futures: Scenario-based strategic planning of industrial development of Kyrgyzstan. Futures 2020, 124, 102646. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, J.H.; Walker, W.E.; Marchau, V.A.W.J. Classifying and communicating uncertainties in model-based policy analysis. InderScience 2010, 10, 299–315. [Google Scholar] [CrossRef]
- Skea, J.; Van Diemen, R.; Portugal-Pereira, J.; Al Khourdajie, A. Outlooks, explorations and normative scenarios: Approaches to global energy futures compared. Technol. Forecast. Soc. Chang. 2021, 168, 120736. [Google Scholar] [CrossRef]
- Barredo, J.I.; Engelen, G. Land Use Scenario Modeling for Flood Risk Mitigation. Sustainability 2010, 2, 1327–1344. [Google Scholar] [CrossRef]
- Kwakkel, J.H.; Auping, W.L.; Pruyt, E. Dynamic scenario discovery under deep uncertainty: The future of copper. Technol. Forecast. Soc. Chang. 2013, 8, 789–800. [Google Scholar] [CrossRef]
- Mannucci, S.; Morganti, M. How to tackle climate fragilities by DMDU. Making possible with regenerative design. TECHNE J. Technol. Archit. Environ. 2022, 23, 45–53. [Google Scholar] [CrossRef]
- Marchau, V.A.W.J.; Walker, W.E.; Bloemen, P.J.T.M.; Popper, S.W. Decision Making under Deep Uncertainty: From Theory to Practice, 1st ed.; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-05251-5. [Google Scholar]
- Kwakkel, J.H.; Haasnoot, M. Supporting DMDU: A Taxonomy of Approaches and Tools. In Decision Making under Deep Uncertainty: From Theory to Practice, 1st ed.; Springer International Publishing: Cham, Switzerland, 2019; Part III; pp. 355–364. ISBN 978-3-030-05251-5. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 10 March 2023).
- Comune di Ravenna. PAESC Piano di Azione per l’Energia Sostenibile e il Clima 2020. Available online: https://www.comune.ra.it/aree-tematiche/ambiente-e-animali/ambiente-e-territorio/strumenti-di-gestione-ambientale/paes-piano-dazione-per-lenergia-sostenibile/ (accessed on 20 November 2022).
- ERVERT (Emilia-Romagna Valorizzazione Economica Territorio) Spa. Schede Metodologiche per il Calcolo delle Riduzioni di CO2eq. Piani Clima 2007–2020 2013, Regione Emilia-Romagna. Available online: https://ambiente.regione.emilia-romagna.it/it/cambiamenti-climatici/materiali-vari/documenti_vecchia_versione/piani-clima/materiale-di-approfondimento/piani-clima-2007-2020-schede-metodologiche-per-la-riduzione-della-co2eq (accessed on 30 January 2020).
- Decreto del Presidente della Repubblica del 11 Luglio 1980, n. 753. Nuove Norme in Materia di Polizia, Sicurezza e Regolarità dell’Esercizio delle Ferrovie e di Altri Servizi di Trasporto. Available online: https://territorio.regione.emilia-romagna.it/codice-territorio/semplificazione-edilizia/non-rue/2.2 (accessed on 10 January 2020).
- Staffilani, F.; Guermandi, M.; Tarocco, P.; Ungaro, F.; Calzolari, C. Carta del Carbonio Organico Immagazzinato nei Suoli della Pianura Emiliano-Romagnola da 0 a 30 cm. Available online: http://mappegis.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/NOTE_ILLUSTRATIVE_stockCO30_pianura.pdf (accessed on 15 February 2020).
- Barrington-Leigh, C.; Ouliaris, M. The renewable energy landscape in Canada: A spatial analysis. Renew. Sustain. Energy Rev. 2017, 75, 809–819. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Planning renewable energy in rural areas: Impacts on occupation and land use. Energy 2018, 155, 630–640. [Google Scholar] [CrossRef]
- Haasnoot, M.; Warren, A.; Kwakkel, J.H. Dynamic Adaptive Policy Pathways (DAPP). In Decision Making under Deep Uncertainty: From Theory to Practice; Marchau, V.A.W.J., Walker, W.E., Bloemen, P.J.T.M., Popper, S.W., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 71–92. ISBN 978-3-030-05252-2. [Google Scholar]
- Lobosco, G. Il paradosso dei paesaggi disturbati dalla transizione energetica. L’isola di Pantelleria verso nuovi ecosistemi. Ri-Vista. Res. Landsc. Archit. 2019, 17, 176–191. [Google Scholar] [CrossRef]
- Mathur, A.; Da Cunha, D. Mississippi Floods: Designing a Shifting Landscape, 1st ed.; Yale University Press: London, UK, 2001. [Google Scholar]
- Mathur, A.; Da Cunha, D. Design in the Terrain of Water, 1st ed.; Applied Research + Design Publishing: Novato, CA, USA, 2014. [Google Scholar]
- Sijmons, D.; Feddes, Y.; Luiten, E.; Feddes, F.; Nolden, M. Room for the River: Safe and Attractive Landscapes, 1st ed.; Uitgeverij Blauwdruk: Wageningen, The Netherlands, 2017; ISBN 978-94-9247-496-4. [Google Scholar]
- Redford, K.H.; Adams, W.M. Payment for ecosystem services and the challenge of saving nature. Conserv. Biol. 2009, 23, 785–787. [Google Scholar] [CrossRef]
- Rodríguez-Robayo, K.J.; Merino-Perez, L. Contextualizing context in the analysis of payment for ecosystem services. Ecosyst. Serv. 2017, 23, 259–267. [Google Scholar] [CrossRef]
- Brown, K. Resilience, Development and Global Change, 1st ed.; Routledge: London, UK, 2016; pp. 138–139. ISBN 978-0-415-66346-5. [Google Scholar]
- Covenant of Mayors. Available online: https://climate-adapt.eea.europa.eu/en/eu-adaptation-policy/covenant-of-mayors (accessed on 10 March 2022).
Photovoltaic Actions | Surface (ha) | CO2 Removed (1 ha = −376.59 t CO2) (Tons) | Emission Reduction per Relative Action (%) |
---|---|---|---|
Action I | 1114.5 | 419,709.59 | −25% |
Action II | 775 | 291,857.25 | −17.3% |
Action III | 793 | 298,635.87 | −17.7% |
Total Actions I + II + III | 2663.2 | 1,010,202.68 | −60% + (−40%) * = −100% |
Biomass Production Actions (BA) | Surface (ha) | CO2 Removed (1 ha = −0.37 t CO2) (Tons) | Emission Reduction per Relative Action (%) |
---|---|---|---|
Action I | 8306 | 3073.22 | −0.2% |
Action II | 14,206 | 5256.22 | −0.3% |
Action III | 12,794 | 4733.78 | −0.3% |
Total Actions I + II + III | 35,306 | 13,063.22 | −0.8% + (−40%) * = −40.8% |
Wind-Turbine Actions | Turbine (Number) | CO2 Removed (1 wt = −3118 t CO2) (Tons) | Emission Reduction per Relative Action (%) |
---|---|---|---|
Action I | 54 | 168,372 | −10% |
Action II | 85 | 255,676 | −15.7% |
Action III | 185 | 576,830 | −34.3% |
Total Actions I + II + III | 321 | 1,000,878 | −60% + (−40%) * = −100% |
Energy Sources Mix Actions | Surface or Turbines (ha; Number) | CO2 Removed (Tons) | Emission Reduction per Relative Action (%) |
---|---|---|---|
Photovoltaic | 1025.7 ha | 386,268.36 | −22.9% |
Biomass production | 9486 ha | 3509.82 | −0.2% |
Wind-turbine | 110 turbines | 342,980 | −20.4% |
Total energy sources mix | 10,511.7 ha + 110 turbines | 732,758.18 | −43.5% + (−40% − 20%) * = −103.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobosco, G.; Tinti, L.; Magagnoli, B.; Mencarini, V.; Mannucci, S.; Ferrero, M. Landscape as a Palimpsest for Energy Transition: Correlations between the Spatial Development of Energy-Production Infrastructure and Climate-Mitigation Goals. Atmosphere 2023, 14, 921. https://doi.org/10.3390/atmos14060921
Lobosco G, Tinti L, Magagnoli B, Mencarini V, Mannucci S, Ferrero M. Landscape as a Palimpsest for Energy Transition: Correlations between the Spatial Development of Energy-Production Infrastructure and Climate-Mitigation Goals. Atmosphere. 2023; 14(6):921. https://doi.org/10.3390/atmos14060921
Chicago/Turabian StyleLobosco, Gianni, Lorenzo Tinti, Beatrice Magagnoli, Vittoria Mencarini, Simona Mannucci, and Marco Ferrero. 2023. "Landscape as a Palimpsest for Energy Transition: Correlations between the Spatial Development of Energy-Production Infrastructure and Climate-Mitigation Goals" Atmosphere 14, no. 6: 921. https://doi.org/10.3390/atmos14060921
APA StyleLobosco, G., Tinti, L., Magagnoli, B., Mencarini, V., Mannucci, S., & Ferrero, M. (2023). Landscape as a Palimpsest for Energy Transition: Correlations between the Spatial Development of Energy-Production Infrastructure and Climate-Mitigation Goals. Atmosphere, 14(6), 921. https://doi.org/10.3390/atmos14060921