An Improved S-Band Polarimetric Radar-Based QPE Algorithm for Typhoons over South China Using 2DVD Observations
Abstract
:1. Introduction
2. Observation Data and Pre-Processing
2.1. Rain Gauge Rainfall Data and Pre-Processing
2.2. Drop Size Distribution Data and Pre-Processing
2.3. Polarimetric Radar Data and Pre-Processing
2.4. QPE Algorithm Evaluation
3. Establishing The 2DVD-Typhoon Algorithm
3.1. Establishing Simple QPE Estimators Using 2DVD Drop Size Distributions
3.2. Establishing the Composite QPE Algorithm Using the Quantitative Distribution Interval of the Performance of Simple QPE Estimators in ZH–ZDR Space
3.2.1. Error Distribution Characteristics of Simple QPE Estimators
3.2.2. Establishing a Composite QPE Algorithm (2DVD-Typhoon)
4. Evaluation of the 2DVD-Typhoon Algorithm
4.1. Comparison of the Composite QPE Algorithm with the Simple QPE Estimators in the Cumulative Rainfall of Each Typhoon Rainfall Event
4.2. Comparison of 2DVD-Typhoon with the Classic CSU-HIDRO QPE Algorithm
4.2.1. Comparison Using all Samples
4.2.2. Comparison by Rain Intensity
5. Discussion and Conclusions
- (1)
- A comparison of R(ZH), R(ZH, ZDR), R(KDP) and R(KDP, ZDR) reveals a better estimation performance of R(ZH) and R(KDP) than R(ZH, ZDR) and R(KDP, ZDR), largely due to the negative impact of the polarimetric parameter ZDR. Quantitative investigation shows that, due to the influence of strong crosswinds brought on by the typhoon, the excessively large ZDR bias of raindrops leads to significant underestimation by R(ZH, ZDR) and R(KDP, ZDR).
- (2)
- For each typhoon-induced rainfall event, 2DVD-Typhoon returns better values for the evaluation criteria compared to the simple QPE estimators. This is mainly because the 2DVD-Typhoon algorithm is able to quantitatively obtain the optimal intervals of the four simple QPE estimators, thereby fully utilizing the advantages of each simple QPE estimator and producing the best QPE results.
- (3)
- Compared to the classic CSU-HIDRO algorithm, 2DVD-Typhoon performs better on hourly rainfall, accumulated rainfall and across rainfall intensities, as indicated by the NE, RMSE and CC values. In the comparison using all samples, 2DVD-Typhoon yields better NE (40.98), RMSE (5.791 mm) and CC (0.808). In the comparison by rain intensity classification, 2DVD-Typhoon shows a higher estimation performance in all three rain intensity intervals: 0 < R < 10, 10 ≤ R < 20 and R ≥ 20. The NE of 2DVD-Typhoon is 11.42% lower than that of CSU-HIDRO in the rainfall interval of 10 ≤ R < 20.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Xu, G.; Xian, D.; Fournier-Viger, P.; Li, X.; Ye, Y.; Hu, X. AM-ConvGRU: A spatio-temporal model for typhoon path prediction. Neural Comput. Appl. 2022, 34, 5905–5921. [Google Scholar] [CrossRef]
- Chen, W.; Lu, Y.; Sun, S.; Duan, Y.; Leckebusch, G.C. Hazard Footprint-Based Normalization of Economic Losses from Tropical Cyclones in China During 1983–2015. Int. J. Disaster Risk Sci. 2018, 9, 195–206. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Liu, G.M.; Sun, X.Y.; Fei, X.Y.; Wang, P.T.; Lv, T.T.; Xue, Z.S.; He, Y.W. Risk assessment of tropical storm surges for coastal regions of China. J. Geophys. Res. Atmos. 2014, 119, 5364–5374. [Google Scholar] [CrossRef]
- Zhao, H.; Duan, X.; Raga, G.B.; Klotzbach, P.J. Changes in Characteristics of Rapidly Intensifying Western North Pacific Tropical Cyclones Related to Climate Regime Shifts. J. Clim. 2018, 31, 8163–8179. [Google Scholar] [CrossRef]
- Zhang, P.C.; Du, B.Y.; Dai, T.P. Radar Meteorology; China Meteorological Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Hu, M.B.; Gao, T.C.; Tang, D.Z. Analysis and Application of Doppler Radar Data; People’s Liberation Army Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Liu, L.P.; Ge, R.S.; Zhang, P.Y. A Study of Method and Accuracy of Rainfall Rate and Liquid Water Content Measurements by Dual Linear Polarization Doppler Radar. Chin. J. Atmos. Sci. 2002, 26, 709–719. (In Chinese) [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Battan, L.J. Radar Observations of the Atmosphere; The University of Chicago Press: Chicago, IL, USA, 1973; p. 324. [Google Scholar]
- Schuur, T.J.; Ryzhkov, A.V.; Clabo, D.R. Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. In Proceedings of the 32nd Conference on Radar Meteorology in Alvarado GH CD-ROM, Albuquerque, NM, USA, 22–28 October 2015. [Google Scholar]
- Ryzhkov, A.; Diederich, M.; Zhang, P.; Simmer, C. Potential Utilization of Specific Attenuation for Rainfall Estimation, Mitigation of Partial Beam Blockage, and Radar Networking. J. Atmos. Ocean. Technol. 2014, 31, 599–619. [Google Scholar] [CrossRef]
- Seliga, T.A.; Bringi, V.N. Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. J. Appl. Meteorol. Climatol. 1976, 15, 69–76. [Google Scholar] [CrossRef]
- Liu, L.; Qian, Y.; Wang, Z.; Chu, R. Comparitive Study on Dual Linear Polarization Radar Measuring Rainfall Rate. Chin. J. Atmos. Sci. 1996, 20, 615–619. (In Chinese) [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Bechini, R. An Improved Dual-Polarization Radar Rainfall Algorithm (DROPS2.0): Application in NASA IFloodS Field Campaign. J. Hydrometeorol. 2017, 18, 917–937. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Giangrande, S.E.; Schuur, T.J. Rainfall estimation with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteorol. 2005, 44, 502–515. [Google Scholar] [CrossRef]
- Zrnić, D.; Doviak, R.; Zhang, G.; Ryzhkov, A. Bias in Differential Reflectivity due to Cross Coupling through the Radiation Patterns of Polarimetric Weather Radars. J. Atmos. Ocean. Technol. 2010, 27, 1624–1637. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnic, D.S. Differential propagation phase shift and rainfall rate estimation. Radio Sci. 1986, 21, 235–247. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnić, D.S. Rain Rate Estimates from Differential Polarization Measurements. J. Atmos. Ocean. Technol. 1987, 4, 588–598. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnić, D.S. Estimation of Rain and Hail Rates in Mixed-Phase Precipitation. J. Atmos. Sci. 1990, 47, 565–583. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Polarimetric Rainfall Estimation in the Presence of Anomalous Propagation. J. Atmos. Ocean. Technol. 1998, 15, 1320–1330. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Kumjian, M.; Ganson, S.; Zhang, P. Polarimetric radar characteristics of melting hail. Pt II: Practical implications. J. Appl. Meteorol. Climatol. 2013, 52, 2871–2886. [Google Scholar] [CrossRef]
- Jameson, A.R. A Comparison of Microwave Techniques for Measuring Rainfall. J. Appl. Meteorol. 1991, 30, 32–54. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnić, D.S. Comparison of Dual-Polarization Radar Estimators of Rain. J. Atmos. Ocean. Technol. 1995, 12, 249–256. [Google Scholar] [CrossRef]
- Petersen, W.A.; Carey, L.D.; Rutledge, S.A.; Knievel, J.C.; Johnson, R.H.; Doesken, N.J.; McKee, T.B.; Haar, T.V.; Weaver, J.F. Mesoscale and Radar Observations of the Fort Collins Flash Flood of 28 July 1997. Bull. Am. Meteorol. Soc. 1999, 80, 191–216. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Krause, J.; Schuur, T.; Palmer, R.; Zrnic, D. Simultaneous measurements of precipitation using S-band and C-band polarimetric radars. J. Iahs Aish Publication. 2012, 351, 87–92. [Google Scholar]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M.; Chandrasekar, V. Dual-Polarization Radar Rainfall Estimation over Tropical Oceans. J. Appl. Meteorol. Clim. 2018, 57, 755–775. [Google Scholar] [CrossRef]
- Maki, M.; Park, S.-G.; Bringi, V. Effect of Natural Variations in Rain Drop Size Distributions on Rain Rate Estimators of 3 cm Wavelength Polarimetric Radar. J. Meteorol. Soc. Jpn. Ser. II 2005, 83, 871–893. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Gorgucci, E.; Scarchilli, G. Optimization of Multiparameter Radar Estimates of Rainfall. J. Appl. Meteorol. 1993, 32, 1288–1293. [Google Scholar] [CrossRef]
- Matrosov, S.; Kingsmill, D.; Ralph, F. The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeorol. 2005, 6, 248–262. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Krause, J.M.; Ryzhkov, A.V. Automatic Designation of the Melting Layer with a Polarimetric Prototype of the WSR-88D Radar. J. Appl. Meteorol. Clim. 2008, 47, 1354–1364. [Google Scholar] [CrossRef]
- Figueras i Ventura, J.; Tabary, P. The new French operational polarimetric radar rainfall rate product. J. Appl. Meteorol. Climatol. 2013, 52, 1817–1835. [Google Scholar] [CrossRef]
- Cifelli, R.; Chandrasekar, V.; Lim, S.; Kennedy, P.C.; Wang, Y.; Rutledge, S.A. A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events. J. Atmos. Ocean. Technol. 2011, 28, 352–364. [Google Scholar] [CrossRef]
- Yu, Z.; Xian-Tong, L.; Bing-Hong, C.; Jia-Bao, F.; Lin, Z.; Cong-Cong, T. Application of X-band Polarimetric Phased-array Radars in Quantitative Precipitation Estimation. J. Trop. Meteorol. 2023, 29, 142–152. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.P.; Wu, C. An Optimization Rainfall Algorithm of S Band Dual Polarization Radar Based on Hydrometeor Identification. J. Meteorol. Mon. 2017, 43, 1041–1051. (In Chinese) [Google Scholar]
- Cifelli, R.; Barjenbruch, D.; Brunkow, D.; Carey, L.; Davey, C.; Doesken, N.; Gimmestad, C.; Huse, T.; Kennedy, P.; Rutledge, S.A. Evaluation of an operational polarimetric rainfall algorithm. In Proceedings of the 31st International Conference on Radar Meteorology, Seattle, WA, USA, 7 August 2003. [Google Scholar]
- Yang, Z.; Li-ping, L.; Hao, W.; Chao, C.; Han, W.; Bao-zhu, X. Development and assessment of quantitative precipitation estimation algorithms for S-, C-, and X-band dual-polarization radars based on disdrometer data from three regions of China. J. Trop. Meteorol. 2019, 25, 269–292. [Google Scholar]
- Liu, X.; Wan, Q.; Wang, H.; Xiao, H.; Zhang, Y.; Zheng, T.; Feng, L. Raindrop Size Distribu-tion Parameters Retrieved from Guangzhou S-band Polarimetric Radar Observations. J. Meteorol. Res. 2018, 32, 571–583. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, S.; Liu, X.; Chen, X.; Zhang, H.; Qi, T.; Zeng, G. Improving S-Band Polarimetric Radar Monsoon Rainfall Estimation with Two-Dimensional Video Disdrometer Observations in South China. Atmosphere 2021, 12, 831. [Google Scholar] [CrossRef]
- Lu, F.; Sheng, H.; Xian-Tong, L.; Hui-Qi, L.; Hui, X.; Xiao-Hui, L.; Rui-Ze, L.; Qing, L. Comparison of Microphysical Characteristics Between Warm-sector and Frontal Heavy Rainfall in the South of China. J. Trop. Meteorol. 2023, 29, 87–100. [Google Scholar] [CrossRef]
- Feng, L.; Hu, S.; Liu, X.; Xiao, H.; Pan, X.; Xia, F.; Ou, G.; Zhang, C. Precipitation Microphysical Characteristics of Typhoon Mangkhut in Southern China Using 2D Video Disdrometers. Atmosphere 2020, 11, 975. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, K.; Zhang, G.; Huang, H.; Liu, S.; Wen, L.; Yang, Z.; Yang, Z.; Xu, L.; Zhu, W. Improving Polarimetric C-Band Radar Rainfall Estimation with Two-Dimensional Video Disdrometer Observations in Eastern China. J. Hydrometeorol. 2017, 18, 1375–1391. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wang, G.L.; Liu, L.P.; Jiang, Y.; Wang, D.; Li, F. Development of a real-time quality control method for automatic rain gauge data using radar quantitative precipitation estimation. Chin. J. Atmos. Sci. 2015, 39, 59–67. (In Chinese) [Google Scholar]
- Wu, H.Y.; Li, Z.H.; Li, W.Y.; Zheng, J. Characteristics Analysis of Extremly Severe Precipitation Based on Regional Automatic Weather Stations in Guangdong. J. Meteorol. Mon. 2020, 46, 801–812. (In Chinese) [Google Scholar]
- Jing, G.F.; Luo, L.; Xiao, H.; Guo, J.; Cui, X. Application Research of Dual-Polarization Radar in Quality Control of Automatic Rain Gauge. J. Meteorol. Mon. 2020, 46, 1189–1198. (In Chinese) [Google Scholar]
- Xian-Tong, L.; Zheng, R.; Sheng, H.; Qi-Lin, W.; Li-Ping, L.; Ya-Li, L.; Zhi-Qun, H.; Hui-Qi, L.; Hui, X.; Wei-Yan, L.; et al. The Longmen Cloud Physics Field Experiment Base, China Meteorological Administration. J. Trop. Meteorol. 2023, 29, 1–15. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Jaffrain, J.; Berne, A. Experimental Quantification of the Sampling Uncertainty Associated with Measurements from PARSIVEL Disdrometers. J. Hydrometeorol. 2011, 12, 352–370. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Hu, S.; Wan, Q.; Xiao, H.; Zheng, T.; Li, M.; Ye, L.; Guo, Z.; Wang, Y.; et al. A High-precision and Fast Solution Method of Gamma Raindrop Size Distribution based on 0-Moment and 3-Moment in South China. J. Appl. Meteorol. Clim. 2021, 60, 1407–1421. [Google Scholar] [CrossRef]
- Wu, C. Data Quality Analysis, Hydrometeor Classification and Mosaic Application of Polarimetric Radar in China; Nanjing University of Information Science and Technology: Nanjing, China, 2018. (In Chinese) [Google Scholar]
- Wang, H.; Wan, Q.L.; Yin, J.F.; Ding, W.Y. Application of the dual-polarization radar data in numerical modeling studies: Construction of the simulator. Acta Meteorol. Sin. 2016, 74, 229–243. [Google Scholar]
- Huang, H. A Research on Optimization-Based Rainfall Parameter Retrieval Using Polarimetric Radar Data; Nanjing University: Nanjing, China, 2018. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, L.; Wen, H.; Wu, C.; Zhang, Y. Evaluation of the Polarimetric-Radar Quantitative Precipitation Estimates of an Extremely Heavy Rainfall Event and Nine Common Rainfall Events in Guangzhou. Atmosphere 2018, 9, 330. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, D.; Ma, J.; Li, Z.; Yao, Z.; Sun, Z. Quality Control Analysis and Effect Evaluation for S-band Dual Polarimetric Radar. In Proceedings of the ICFEICT 2021: International Conference on Frontiers of Electronics, Information and Computation Technologies, Changsha, China, 21–23 May 2021. (In Chinese). [Google Scholar]
Typhoon Name (Identification Code) | Observation Period (World Time) | Number of Rain Gauges | Maximum Hourly Rainfall (mm/h) | Maximum Accumulated Rainfall (mm) | Average Accumulated Rainfall (mm) | Number of Volume Scans | Sample Size of Hourly Rainfall |
---|---|---|---|---|---|---|---|
Merbok (1702) | 12–13 June 2017 | 110 | 46.5 | 70.8 | 12.8 | 2200 | 220 |
Hato (1713) | 22 August 2017 | 152 | 33.5 | 41.2 | 11.9 | 3700 | 370 |
Mawar (1716) | 3–4 September 2017 | 625 | 71.9 | 198.7 | 27.6 | 21,570 | 2157 |
Ewiniar (1804) | 4–8 June 2018 | 1039 | 120.8 | 897.8 | 156.6 | 158,400 | 15,840 |
Mangkhut (1822) | 16–17 September 2018 | 989 | 70.2 | 1844 | 96.7 | 107,210 | 10,721 |
Mun (1904) | 3–4 July 2019 | 965 | 46.4 | 269.6 | 14.4 | 33,910 | 3391 |
Wipha (1907) | 31 July–1 August 2019 | 1043 | 68.5 | 863.1 | 56.4 | 85,960 | 8596 |
Parameter | Equation | Typhoon Process | |||||
---|---|---|---|---|---|---|---|
Total Rainfall | Mawar (1716) | Ewiniar (1804) | Mangkhut (1822) | Mun (1904) | Wipha (1907) | ||
NE (fraction) | 2DVD-Typhoon | 0.41 | 0.36 | 0.35 | 0.49 | 0.53 | 0.43 |
R(ZH) | 0.45 | 0.38 | 0.40 | 0.50 | 0.65 | 0.47 | |
R(ZH, ZDR) | 0.58 | 0.52 | 0.59 | 0.66 | 0.49 | 0.45 | |
R(KDP) | 0.51 | 0.46 | 0.43 | 0.58 | 0.73 | 0.59 | |
R(KDP, ZDR) | 0.60 | 0.53 | 0.53 | 0.66 | 0.73 | 0.67 | |
RMSE (mm) | 2DVD-Typhoon | 5.791 | 4.78 | 5.953 | 6.838 | 4.038 | 4.862 |
R(ZH) | 6.308 | 4.975 | 6.811 | 7.005 | 4.728 | 5.152 | |
R(ZH, ZDR) | 7.814 | 6.306 | 9.197 | 8.684 | 3.625 | 5.19 | |
R(KDP) | 7.084 | 5.388 | 7.627 | 7.68 | 5.456 | 6.304 | |
R(KDP, ZDR) | 7.931 | 6.054 | 8.718 | 8.559 | 5.387 | 6.984 | |
CC | 2DVD-Typhoon | 0.808 | 0.882 | 0.865 | 0.714 | 0.746 | 0.754 |
R(ZH) | 0.765 | 0.871 | 0.854 | 0.708 | 0.852 | 0.779 | |
R(ZH, ZDR) | 0.719 | 0.856 | 0.825 | 0.669 | 0.84 | 0.753 | |
R(KDP) | 0.743 | 0.869 | 0.793 | 0.654 | 0.577 | 0.636 | |
R(KDP, ZDR) | 0.675 | 0.861 | 0.728 | 0.585 | 0.492 | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Hu, S.; Zeng, G.; Chen, X.; Zhang, H.; Xia, F.; Zhuang, J.; Chen, M.; Fan, Y. An Improved S-Band Polarimetric Radar-Based QPE Algorithm for Typhoons over South China Using 2DVD Observations. Atmosphere 2023, 14, 935. https://doi.org/10.3390/atmos14060935
Guo Z, Hu S, Zeng G, Chen X, Zhang H, Xia F, Zhuang J, Chen M, Fan Y. An Improved S-Band Polarimetric Radar-Based QPE Algorithm for Typhoons over South China Using 2DVD Observations. Atmosphere. 2023; 14(6):935. https://doi.org/10.3390/atmos14060935
Chicago/Turabian StyleGuo, Zeyong, Sheng Hu, Guangyu Zeng, Xingdeng Chen, Honghao Zhang, Feng Xia, Jiahui Zhuang, Min Chen, and Yuwen Fan. 2023. "An Improved S-Band Polarimetric Radar-Based QPE Algorithm for Typhoons over South China Using 2DVD Observations" Atmosphere 14, no. 6: 935. https://doi.org/10.3390/atmos14060935
APA StyleGuo, Z., Hu, S., Zeng, G., Chen, X., Zhang, H., Xia, F., Zhuang, J., Chen, M., & Fan, Y. (2023). An Improved S-Band Polarimetric Radar-Based QPE Algorithm for Typhoons over South China Using 2DVD Observations. Atmosphere, 14(6), 935. https://doi.org/10.3390/atmos14060935