Analysis of the Development Mechanisms of a Polar Low over the Norwegian Sea Simulated with the Canadian Regional Climate Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
Life Cycle and Classification of the PL
2.3. Analysis of the Development Mechanisms of the PL
3. Results and Discussion
3.1. Life Cycle and Classification of the PL
3.2. Development Mechanisms of the PL
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1.
- Step 1: Find an expression for
- 2.
- Step 2: Link to
- 3.
- Step 3: The surface pressure tendency equation
References
- Klein, T.; Heinemann, G. Interaction of katabatic winds and mesocyclones near the eastern coast of Greenland. Meteorol. Appl. 2002, 9, 407–422. [Google Scholar] [CrossRef]
- DuVivier, A.K.; Cassano, J.J.; Craig, A.; Hamman, J.; Maslowski, W.; Nijssen, B.; Osinski, R.; Roberts, A. Winter Atmospheric Buoyancy Forcing and Oceanic Response during Strong Wind Events around Southeastern Greenland in the Regional Arctic System Model (RASM) for 1990–2010. J. Clim. 2016, 29, 975–994. [Google Scholar] [CrossRef]
- Michel, C.; Terpstra, A.; Spengler, T. Polar Mesoscale Cyclone Climatology for the Nordic Seas Based on ERA-Interim. J. Clim. 2018, 31, 2511–2532. [Google Scholar] [CrossRef]
- Valkonen, E.; Cassano, J.; Cassano, E. Arctic Cyclones and Their Interactions with the Declining Sea Ice: A Recent Climatology. J. Geophys. Res. Atmos. 2021, 126, e2020JD034366. [Google Scholar] [CrossRef]
- Gutjahr, O.; Jungclaus, J.H.; Brüggemann, N.; Haak, H.; Marotzke, J. Air-Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea. J. Geophys. Res. Ocean. 2022, 127, e2021JC018075. [Google Scholar] [CrossRef]
- Moore, G.W.K.; York, J.; Sathiyamoorthy, S. Polar lows in the Labrador Sea. Tellus A 1996, 48, 17–40. [Google Scholar] [CrossRef]
- Condron, A.; Renfrew, I.A. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat. Geosci. 2013, 6, 34. [Google Scholar] [CrossRef]
- Heinemann, G.; Claud, C. Report of a workshop on ‘‘theoretical and observational studies of polar lows’’ of the European Geophysical Society Polar Lows Working Group. Bull. Am. Meteorol. Soc. 1997, 78, 2643–2658. [Google Scholar] [CrossRef] [Green Version]
- Orlanski, I. A Rational Subdivision of Scales for Atmospheric Processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Moreno-Ibáñez, M.; Laprise, R.; Gachon, P. Recent advances in polar low research: Current knowledge, challenges and future perspectives. Tellus A 2021, 73, 1890412. [Google Scholar] [CrossRef]
- Turner, J.; Rasmussen, E.A.; Carleton, A.M. Introduction. In Polar Lows: Mesoscale Weather Systems in the Polar Regions; Rasmussen, E.A., Turner, J., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 1–51. [Google Scholar]
- Fletcher, J.; Mason, S.; Jakob, C. The Climatology, Meteorology, and Boundary Layer Structure of Marine Cold Air Outbreaks in Both Hemispheres. J. Clim. 2016, 29, 1999–2014. [Google Scholar] [CrossRef]
- Sergeev, D.E.; Renfrew, I.A.; Spengler, T.; Dorling, S.R. Structure of a shear-line polar low. Q. J. R. Meteorol. Soc. 2017, 143, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.-i.I.; Niino, H.; Spengler, T. Formation of maritime convergence zones within cold air outbreaks due to the shape of the coastline or sea ice edge. Q. J. R. Meteorol. Soc. 2022, 148, 2546–2562. [Google Scholar] [CrossRef]
- Gachon, P.; Laprise, R.; Zwack, P.; Saucier, F.J. The effects of interactions between surface forcings in the development of a model-simulated polar low in Hudson Bay. Tellus A 2003, 55, 61–87. [Google Scholar] [CrossRef]
- Albright, M.D.; Reed, R.J.; Ovens, D.W. Origin and structure of a numerically simulated polar low over Hudson Bay. Tellus A 1995, 47, 834–848. [Google Scholar] [CrossRef]
- van Delden, A.; Rasmussen, E.A.; Turner, J.; Røsting, B. Theoretical investigations. In Polar Lows: Mesoscale Weather Systems in the Polar Regions; Rasmussen, E.A., Turner, J., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 286–404. [Google Scholar]
- Mansfield, D.A. Polar lows: The development of baroclinic disturbances in cold air outbreaks. Q. J. R. Meteorol. Soc. 1974, 100, 541–554. [Google Scholar] [CrossRef]
- Rasmussen, E. The polar low as an extratropical CISK disturbance. Q. J. R. Meteorol. Soc. 1979, 105, 531–549. [Google Scholar] [CrossRef]
- Businger, S. The synoptic climatology of polar low outbreaks. Tellus A 1985, 37, 419–432. [Google Scholar] [CrossRef]
- Sardie, J.M.; Warner, T.T. A numerical study of the development mechanisms of polar lows. Tellus A 1985, 37, 460–477. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, E.A.; Turner, J.; Ninomiya, K.; Renfrew, I.A. Observational studies. In Polar Lows: Mesoscale Weather Systems in the Polar Regions; Rasmussen, E.A., Turner, J., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 150–285. [Google Scholar]
- Terpstra, A.; Spengler, T.; Moore, R.W. Idealised simulations of polar low development in an Arctic moist-baroclinic environment. Q. J. R. Meteorol. Soc. 2015, 141, 1987–1996. [Google Scholar] [CrossRef]
- Haualand, K.F.; Spengler, T. Direct and Indirect Effects of Surface Fluxes on Moist Baroclinic Development in an Idealized Framework. J. Atmos. Sci. 2020, 77, 3211–3225. [Google Scholar] [CrossRef]
- Stoll, P.J.; Spengler, T.; Terpstra, A.; Graversen, R.G. Polar lows–moist-baroclinic cyclones developing in four different vertical wind shear environments. Weather Clim. Dyn. 2021, 2, 19–36. [Google Scholar] [CrossRef]
- Kolstad, E.W.; Bracegirdle, T.J. Sensitivity of an apparently hurricane-like polar low to sea-surface temperature. Q. J. R. Meteorol. Soc. 2017, 143, 966–973. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Gray, S.L. The dynamics of a polar low assessed using potential vorticity inversion. Q. J. R. Meteorol. Soc. 2009, 135, 880–893. [Google Scholar] [CrossRef]
- McInnes, H.; Kristiansen, J.; Kristjánsson, J.E.; Schyberg, H. The role of horizontal resolution for polar low simulations. Q. J. R. Meteorol. Soc. 2011, 137, 1674–1687. [Google Scholar] [CrossRef]
- Føre, I.; Nordeng, T.E. A polar low observed over the Norwegian Sea on 3–4 March 2008: High-resolution numerical experiments. Q. J. R. Meteorol. Soc. 2012, 138, 1983–1998. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.S.; Gohm, A.; Dörnbrack, A.; Schäfler, A. The mesoscale structure of a polar low: Airborne lidar measurements and simulations. Q. J. R. Meteorol. Soc. 2011, 137, 1516–1531. [Google Scholar] [CrossRef] [Green Version]
- Terpstra, A.; Michel, C.; Spengler, T. Forward and Reverse Shear Environments during Polar Low Genesis over the Northeast Atlantic. Mon. Weather Rev. 2016, 144, 1341–1354. [Google Scholar] [CrossRef]
- Stoll, P.J. A global climatology of polar lows investigated for local differences and wind-shear environments. Weather Clim. Dyn. 2022, 3, 483–504. [Google Scholar] [CrossRef]
- Xue, J.; Bromwich, D.H.; Xiao, Z.; Bai, L. Impacts of initial conditions and model configuration on simulations of polar lows near Svalbard using Polar WRF with 3DVAR. Q. J. R. Meteorol. Soc. 2021, 147, 3806–3834. [Google Scholar] [CrossRef]
- Sergeev, D.; Renfrew, I.A.; Spengler, T. Modification of Polar Low Development by Orography and Sea Ice. Mon. Weather Rev. 2018, 146, 3325–3341. [Google Scholar] [CrossRef]
- Moreno-Ibáñez, M.; Laprise, R.; Gachon, P. Assessment of simulations of a polar low with the Canadian Regional Climate Model. EarthArXiv 2023, Preprint. [Google Scholar] [CrossRef]
- Côté, J.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A. The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation. Mon. Weather Rev. 1998, 126, 1373–1395. [Google Scholar] [CrossRef]
- Bélair, S.; Mailhot, J.; Girard, C.; Vaillancourt, P. Boundary Layer and Shallow Cumulus Clouds in a Medium-Range Forecast of a Large-Scale Weather System. Mon. Weather Rev. 2005, 133, 1938–1960. [Google Scholar] [CrossRef]
- Bélair, S.; Roch, M.; Leduc, A.-M.; Vaillancourt, P.A.; Laroche, S.; Mailhot, J. Medium-Range Quantitative Precipitation Forecasts from Canada’s New 33-km Deterministic Global Operational System. Weather Forecast. 2009, 24, 690–708. [Google Scholar] [CrossRef]
- Girard, C.; Plante, A.; Desgagné, M.; McTaggart-Cowan, R.; Côté, J.; Charron, M.; Gravel, S.; Lee, V.; Patoine, A.; Qaddouri, A.; et al. Staggered Vertical Discretization of the Canadian Environmental Multiscale (GEM) Model Using a Coordinate of the Log-Hydrostatic-Pressure Type. Mon. Weather Rev. 2014, 142, 1183–1196. [Google Scholar] [CrossRef]
- Moreno-Ibáñez, M.; Laprise, R.; Gachon, P. Polar low developed in the Norwegian Sea on 25 March 2019–Simulations with the Canadian Regional Climate Model (CRCM6/GEM4) and Manual Track; Borealis; V1; 2023. Available online: https://doi.org/10.5683/SP3/6E3ITE (accessed on 4 April 2023).
- NASA. NASA Visible Infrared Imaging Radiometer Suite Level-1B Product User Guide; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2019. Available online: https://ladsweb.modaps.eosdis.nasa.gov/api/v2/content/archives/Document%20Archive/Science%20Data%20Product%20Documentation/NASAVIIRSL1BUGAug2019.pdf (accessed on 22 September 2022).
- Stoll, P.J.; Graversen, R.G.; Noer, G.; Hodges, K. An objective global climatology of polar lows based on reanalysis data. Q. J. R. Meteorol. Soc. 2018, 144, 2099–2117. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. Available Potential Energy and the Maintenance of the General Circulation. Tellus 1955, 7, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. The Nature and Theory of the General Circulation of the Atmosphere; World Meteorological Organization: Geneva, Switerland, 1967. [Google Scholar]
- Clément, M.; Nikiéma, O.; Laprise, R. Limited-area atmospheric energetics: Illustration on a simulation of the CRCM5 over eastern North America for December 2004. Clim. Dyn. 2017, 48, 2797–2818. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.N. A numerical investigation of polar lows. Q. J. R. Meteorol. Soc. 1977, 103, 255–267. [Google Scholar] [CrossRef]
- Yanase, W.; Niino, H. Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Numerical Experiment. J. Atmos. Sci. 2007, 64, 3044–3067. [Google Scholar] [CrossRef]
- Shimada, U.; Wada, A.; Yamazaki, K.; Kitabatake, N. Roles of an upper-level cold vortex and low-level baroclinicity in the development of polar lows over the Sea of Japan. Tellus A 2014, 66, 24694. [Google Scholar] [CrossRef] [Green Version]
- Wu, L. Effect of atmosphere-wave-ocean/ice interactions on a polar low simulation over the Barents Sea. Atmos. Res. 2021, 248, 105183. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 92. [Google Scholar]
- Unidata. MetPy Version 1.3.1; UCAR/Unidata: Boulder, CO, USA, 2022. [Google Scholar]
- Føre, I.; Kristjánsson, J.E.; Kolstad, E.W.; Bracegirdle, T.J.; Saetra, Ø.; Røsting, B. A ‘hurricane-like’ polar low fuelled by sensible heat flux: High-resolution numerical simulations. Q. J. R. Meteorol. Soc. 2012, 138, 1308–1324. [Google Scholar] [CrossRef] [Green Version]
- Leutwyler, D.; Schär, C. Barotropic Instability of a Cyclone Core at Kilometer-Scale Resolution. J. Adv. Model. Earth Syst. 2019, 11, 3390–3402. [Google Scholar] [CrossRef] [Green Version]
- Linders, T.; Saetra, Ø. Can CAPE maintain polar lows? J. Atmos. Sci. 2010, 67, 2559–2571. [Google Scholar] [CrossRef]
- Kristjánsson, J.E.; Thorsteinsson, S.; Kolstad, E.W.; Blechschmidt, A.M. Orographic influence of east Greenland on a polar low over the Denmark Strait. Q. J. R. Meteorol. Soc. 2011, 137, 1773–1789. [Google Scholar] [CrossRef]
- Renfrew, I.A.; Pickart, R.S.; Våge, K.; Moore, G.W.K.; Bracegirdle, T.J.; Elvidge, A.D.; Jeansson, E.; Lachlan-Cope, T.; McRaven, L.T.; Papritz, L.; et al. The Iceland Greenland Seas Project. Bull. Am. Meteorol. Soc. 2019, 100, 1795–1817. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
Time | Vertical Shear Strength | Vertical Shear Vector in the Propagation Direction | Vertical Shear Vector across the Propagation Direction | Type of Shear 1 |
---|---|---|---|---|
00:00 | 4.5 | 3.8 | −2.6 | Forward |
01:00 | 4.5 | 4.5 | 0 | Forward |
02:00 | 4.6 | 3.6 | 2.8 | Forward |
03:00 | 4.7 | 4.7 | −0.6 | Forward |
04:00 | 4.4 | 4.4 | −0.1 | Forward |
05:00 | 4.3 | 4.1 | 1.2 | Forward |
06:00 | 4.1 | 1.5 | −3.9 | Right |
07:00 | 3.9 | −0.1 | 3.9 | Left |
08:00 | 3.8 | 1.3 | 3.5 | Left |
09:00 | 3.7 | 2.5 | 2.6 | Left |
10:00 | 3.5 | 3.4 | 0.6 | Forward |
11:00 | 3.2 | 3.2 | −0.4 | Forward |
12:00 | 3.1 | 3 | 0.3 | Forward |
13:00 | 3 | 2.9 | 0.8 | Forward |
14:00 | 2.9 | 2.7 | 1.2 | Forward |
15:00 | 2.9 | 2.7 | 1.1 | Forward |
16:00 | 3 | 2.9 | 0.7 | Forward |
17:00 | 3 | 3 | 0 | Forward |
18:00 | 2.9 | 1.7 | 2.4 | Left |
19:00 | 3 | 3 | −0.6 | Forward |
20:00 | 2.8 | 2.7 | −0.6 | Forward |
21:00 | 2.6 | n/a | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Ibáñez, M.; Laprise, R.; Gachon, P. Analysis of the Development Mechanisms of a Polar Low over the Norwegian Sea Simulated with the Canadian Regional Climate Model. Atmosphere 2023, 14, 998. https://doi.org/10.3390/atmos14060998
Moreno-Ibáñez M, Laprise R, Gachon P. Analysis of the Development Mechanisms of a Polar Low over the Norwegian Sea Simulated with the Canadian Regional Climate Model. Atmosphere. 2023; 14(6):998. https://doi.org/10.3390/atmos14060998
Chicago/Turabian StyleMoreno-Ibáñez, Marta, René Laprise, and Philippe Gachon. 2023. "Analysis of the Development Mechanisms of a Polar Low over the Norwegian Sea Simulated with the Canadian Regional Climate Model" Atmosphere 14, no. 6: 998. https://doi.org/10.3390/atmos14060998
APA StyleMoreno-Ibáñez, M., Laprise, R., & Gachon, P. (2023). Analysis of the Development Mechanisms of a Polar Low over the Norwegian Sea Simulated with the Canadian Regional Climate Model. Atmosphere, 14(6), 998. https://doi.org/10.3390/atmos14060998