Impact of Solvent Emissions on Reactive Aromatics and Ozone in the Great Lakes Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. GEM-MACH-TEB Model Description and Setup
2.2. Pollutant Emission Inventories and Emission Processing
2.3. Measurements
2.4. Positive Matrix Factorization (PMF)
3. Results
3.1. Positive Matrix Factorization of VOC Data at Windsor West Site
3.2. Comparison of Solvent Use Factor with Inventory-Weighted Speciation Profiles
3.3. Reactivity Weighting Applied to PMF Solvent Factor
3.4. Validation of O3 Predictions
3.5. 2015 Annual Ontario Air Emission Inventories
3.6. Air Emission Inventories for a Defined Border Domain
3.7. GEM-MACH Sensitivity Simulation with 10% Solvent Emission Reduction
3.8. Case Study Periods
3.8.1. Selecting Year 2018 O3 Case Study Periods at Windsor West
3.8.2. Southwest Wind Pattern
3.8.3. Northwest Flow Pattern
3.9. Impact of 10% Emission Reductions on O3 for Summertime 2018
3.10. O3 Exceedances during MOOSE 2021 at Windsor West and Sarnia, Ontario
3.11. Impact of New US Emissions from VCPy Emission Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stieb, D.M.; Yao, J.; Henderson, S.B.; Pinault, L.; Smith-Doiron, M.H.; Robichaud, A.; van Donkelaar, A.; Martin, R.V.; Ménard, R.; Brook, J.R. Variability in ambient ozone and fine particle concentrations and population susceptibility among Canadian health regions. Can. J. Public. Health 2019, 110, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Air Quality. 2023. Available online: www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-quality.html (accessed on 23 April 2023).
- Foley, T.; Betterton, E.A.; Robert Jacko, P.E.; Hillery, J. Lake Michigan air quality: The 1994–2003 LADCO Aircraft Project (LAP). Atmos. Environ. 2011, 45, 3192–3202. [Google Scholar] [CrossRef]
- Cleary, P.A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; McQueen, J.; Tang, Y.; Langel, T.; McKeen, S.; et al. Ozone distributions over southern Lake Michigan: Comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts. Atmos. Chem. Phys. 2015, 15, 5109–5122. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.L.; Loughner, C.P.; Tzortziou, M.; Stehr, J.W.; Pickering, K.E.; Marufu, L.T.; Dickerson, R.R. Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmos. Environ. 2014, 84, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Brook, J.R.; Makar, P.A.; Sills, D.M.L.; Hayden, K.L.; McLaren, R. Exploring the nature of air quality over southwestern Ontario: Main findings from the Border Air Quality and Meteorology Study. Atmos. Chem. Phys. 2013, 13, 10461–10482. [Google Scholar] [CrossRef] [Green Version]
- Makar, P.A.; Zhang, J.; Gong, W.; Stroud, C.; Sills, D.; Hayden, K.L.; Brook, J.; Levy, I.; Mihele, C.; Moran, M.D.; et al. Mass tracking for chemical analysis: The causes of ozone formation in southern Ontario during BAQS-Met 2007. Atmos. Chem. Phys. 2010, 10, 11151–11173. [Google Scholar] [CrossRef] [Green Version]
- McNider, R.T.; Pour-Biazar, A.; Doty, K.; White, A.; Wu, Y.; Qin, M.; Hu, Y.; Odman, T.; Cleary, P.; Kniing, E.; et al. Examination of the physical atmosphere in the Great Lakes region and its potential impact on air quality-Overwater stability and satellite assimilation. J. Appl. Meteor. Climatol. 2018, 57, 2789–2816. [Google Scholar] [CrossRef]
- Stroud, C.A.; Ren, S.; Zhang, J.; Moran, M.D.; Akingunola, A.; Makar, P.A.; Munoz-Alpizar, R.; Leroyer, S.; Bélair, S.; Sills, D.; et al. Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games. Atmosphere 2020, 11, 572. [Google Scholar] [CrossRef]
- Foley, K.M.; Pouliot, G.A.; Eyth, A.; Aldridge, M.F.; Allen, C.; Appel, K.W.; Bash, J.O.; Beardsley, M.; Beidler, J.; Choi, D.; et al. 2002–2017 anthropogenic emissions data for air quality modeling over the United States. Data Brief 2023, 47, 109022. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Chen, C.-L.; Kacarab, M.; Peng, W.; Price, D.; Xu, J.; Cocker, D.R. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions. Atmos. Environ. 2018, 178, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Murphy, B.N.; Isaacs, K.K.; McDonald, B.C.; Lu, Q.; McKeen, S.A.; Koval, L.; Robinson, A.L.; Efstathiou, C.; Allen, C.; et al. Criteria pollutant impacts of volatile chemical products informed by near-field modelling. Nat. Sustain. 2021, 4, 129–137. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Coggon, M.M.; McDonald, B.C.; Peischl, J.; Aikin, K.C.; Gilman, J.B.; Trainer, M.; Warneke, C. Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities. Environ. Sci. Technol. 2021, 55, 188–199. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.C.; Gouw, J.A.D.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coggon, M.M.; Gkatzelis, G.I.; McDonald, B.C.; Gilman, J.B.; Schwantes, R.H.; Abuhassan, N.; Aikin, K.C.; Arend, M.F.; Berkoff, T.A.; Brown, S.S.; et al. Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proc. Natl. Acad. Sci. USA 2021, 118, e2026653118. [Google Scholar] [CrossRef]
- Stroud, C.A.; Zaganescu, C.; Chen, J.; McLinden, C.; Zhang, J.; Wang, D. Toxic volatile organic air pollutants across Canada: Multi-year concentration trends, regional air quality modelling and source apportionment. J. Atmos. Chem. 2016, 73, 137–164. [Google Scholar] [CrossRef] [Green Version]
- Gkatzelis, G.I.; Coggon, M.M.; McDonald, B.C.; Peischl, J.; Gilman, J.B.; Aikin, K.C.; Robinson, M.A.; Canonaco, F.; Prevot, A.S.H.; Trainer, M.; et al. Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. Environ. Sci. Technol. 2021, 55, 4332–4343. [Google Scholar] [CrossRef]
- Khare, P.; Gentner, D.R. Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality. Atmos. Chem. Phys. 2018, 18, 5391–5413. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Pennington, E.; Rao, V.; Murphy, B.N.; Strum, M.; Isaacs, K.K.; Pye, H.O.T. Reactive organic carbon emissions from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 5079–5100. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Bélair, S.; Faucher, M.; Vallée, M.; Carrera, M.L.; Glazer, A. The pan-Canadian High Resolution (2.5 km) Deterministic Prediction System. Weather. Forecast. 2016, 31, 1791–1816. [Google Scholar] [CrossRef]
- Carrera, M.L.; Bélair, S.; Bilodeau, B. The Canadian Land Data Assimilation System (CaLDAS): Description and synthetic evaluation study. J. Hydrometeorol. 2015, 16, 1293–1314. [Google Scholar] [CrossRef]
- Leroyer, S.; Bélair, S.; Spacek, L.; Gultepe, I. Modelling of radiation-based thermal stress indicators for urban numerical weather prediction. Urban Clim. 2018, 25, 64–81. [Google Scholar] [CrossRef]
- Ren, S.; Stroud, C.A.; Belair, S.; Leroyer, S.; Munoz-Alpizar, R.; Moran, M.D.; Zhang, J.; Akingunola, A.; Makar, P.A. Impact of Urbanization on the Predictions of Urban Meteorology and Air Pollutants over Four Major North American Cities. Atmosphere 2020, 11, 969. [Google Scholar] [CrossRef]
- Stroud, C.A.; Morneau, G.; Makar, P.A.; Moran, M.D.; Gong, W.; Pabla, B.; Zhang, J.; Bouchet, V.S.; Fox, D.; Venkatesh, S.; et al. OH-reactivity of volatile organic compounds at urban and rural sites across Canada: Evaluation of air quality model predictions using speciated VOC measurements. Atmos. Environ. 2008, 42, 7746–7756. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Lurmann, F.W. Intercomparison of the ADOM and RADM Gas-Phase Chemical Mechanisms; Electrical Power Research Institute Topical Report; EPRI: Palo Alto, CA, USA, 1989; p. 254. [Google Scholar]
- Stockwell, W.R. The effect of gas-phase chemistry on aqueous-phase sulfur dioxide oxidation rates. J. Atmos. Chem. 1994, 19, 317–329. [Google Scholar] [CrossRef]
- Sassi, M.; Zhang, J.; Moran, M.D. SMOKE-Ready Canadian Air Pollutant Emission Inventory (APEI) Package version 1 [Data Set], Zenodo. 2021. Available online: https://zenodo.org/record/4883639 (accessed on 14 March 2023).
- Environment and Climate Change Canada (ECCC). National Air Pollution Surveillance (NAPS) Program. 2023. Available online: https://donnees-data.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program (accessed on 14 March 2023).
- United States Environmental Protection Agency (USEPA). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. 2014. Available online: https://www.epa.gov/sites/default/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 14 March 2022).
- Li, Z.; Ho, K.F.; Yim, S.H.L. Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution. Sci. Total. Environ. 2020, 725, 138243. [Google Scholar] [CrossRef]
- Baudic, A.; Gros, V.; Sauvage, S.; Locoge, N.; Sanchez, O.; Sarda-Estève, R.; Kalogridis, C.; Petit, J.-E.; Bonnaire, N.; Baisnée, D.; et al. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmos. Chem. Phys. 2016, 16, 11961–11989. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xiang, Z.; Stevanovic, S.; Ristovski, Z.; Salimi, F.; Gao, J.; Wang, H.; Li, L. Role of Chinese cooking emissions on ambient air quality and human health. Sci. Total. Environ. 2017, 589, 173–181. [Google Scholar] [CrossRef]
- Pengchuan, L.; Gao, J.; Xu, Y.; Schauer, J.; Wang, J.; He, W.; Nie, L. Enhanced commercial cooking inventories from the city scale through normalized emission factor dataset and big data. Environ. Pollut. 2022, 315, 120320. [Google Scholar] [CrossRef]
- Li, Z. Long Term Trend and Source Apportionment of Ambient VOCs in Windsor. Master’s Thesis, University of Windsor, Windsor, ON, Canada, 2013. Available online: https://scholar.uwindsor.ca/etd/4984 (accessed on 2 January 2023).
- Carter, W.P.L. Development of the SAPRC-07 Chemical Mechanism and Updated Ozone Reactivity Scales. Contracts No. 03-318, 06-408, and 07-730, Riverside: Center for Environmental Research and Technology, College of Engineering, University of California. 2010. Available online: https://intra.engr.ucr.edu/~carter/SAPRC/saprc07.pdf (accessed on 3 November 2022).
- Heimann, G.; Warneck, P. Hydroxyl radical-induced oxidation of 2,3-dimethylbutane in air. J. Phys. Chem. 1992, 96, 8403–8409. [Google Scholar] [CrossRef]
- Iuga, C.; Osnaya-Soto, L.; Ortiz, E.; Vivier-Bunge, A. Atmospheric oxidation of methyl and ethyl tert-butyl ethers initiated by hydroxyl radicals. A quantum chemistry study. Fuel 2015, 159, 269–279. [Google Scholar] [CrossRef]
- Orkin, V.L.; Khamaganov, V.G.; Kozlov, S.N.; Kurylo, M.J. Measurements of rate constants for the OH reactions with bromoform (CHBr3), CHBr2Cl, CHBrCl2, and epichlorohydrin (C3H5ClO). J. Phys. Chem. A 2013, 117, 3809–3818. [Google Scholar] [CrossRef] [PubMed]
- Permar, W.; Jin, L.; Peng, Q.; O’Dell, K.; Lill, E.; Selimovic, V.; Selimovic, V.; Yokelson, R.J.; Hornbrook, R.S.; Hills, A.J.; et al. Atmospheric OH reactivity in the western United States determined from comprehensive gas-phase measurements during WE-CAN. Environ. Sci. Atmos. 2023, 3, 97–114. [Google Scholar] [CrossRef]
- Yu, S.; Mathur, R.; Schere, K.; Kang, D.; Pleim, J.; Otte, T.L. A detailed evaluation of the Eta-CMAQ forecast model performance for O3, its related precursors, and meteorological parameters during the 2004 ICARTT study. J. Geophys. Res. Atmos. 2007, 112, D12. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.; Fox, T.; Fuentes, M.; Gilliland, A.; Hanna, S.; Hogrefe, C.; Irwin, J.; Rao, S.T.; Scheffe, R.; Schere, K.; et al. A framework for evaluating regional-scale numerical photochemical modeling systems. Environ. Fluid Mech. 2010, 10, 471–489. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.T.; Galmarini, S.; Puckett, K. Air quality model evaluation international initiative (AQMEII): Advancing the state of the science in regional photochemical modeling and its alication. Bull. Am. Meteorol. Soc. 2011, 92, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.; Baker, K.R.; Phillips, S. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 2012, 61, 124–139. [Google Scholar] [CrossRef]
- Baker, K.; Liljegren, J.; Valin, L.; Judd, L.; Szykman, J.; Millet, D.; Czarnetzki, A.; Whitehill, A.; Murphy, B.; Stanier, C. Photochemical model representation of ozone and precursors during the 2017 Lake Michigan ozone study (LMOS). Atmos. Environ. 2023, 293, 119465. [Google Scholar] [CrossRef]
- Thunis, P.; Clappier, A.; Tarrason, L.; Cuvelier, C.; Monteiro, A.; Pisoni, E.; Wesseling, J.; Belis, C.A.; Pirovano, G.; Janssen, S.; et al. Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environ. Int. 2019, 130, 104825. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Su, Y. Impacts of Regional Transport and Meteorology on Ground-Level Ozone in Windsor, Canada. Atmosphere 2020, 11, 1111. [Google Scholar] [CrossRef]
- Zhang, T.; Xiaohong, X.; Yushan, S. Long-term measurements of ground-level ozone in Windsor, Canada and surrounding areas. Chemosphere 2022, 294, 133636. [Google Scholar] [CrossRef] [PubMed]
Chemical Species | Acronym | OH-Rate Coefficient (298 K, cm3/molec/s) |
---|---|---|
Ethane | C2H6 | 2.72 × 10−13 |
Propane + Benzene + Acetylene | C3H8 | 1.18 × 10−12 |
Ethene | ETHE | 8.54 × 10−12 |
Isoprene | ISOP | 8.03 × 10−11 |
Long chain alkene | ALKE | 3.88 × 10−11 |
Long chain alkane | ALKA | 4.56 × 10−12 |
Multi-substituted aromatic | AROM | 3.94 × 10−11 |
Mono-substituted aromatic | TOLU | 6.19 × 10−12 |
Cresol species | CRES | 4.00 × 10−11 |
Ketone species | MEK | 9.85 × 10−13 |
Formaldehyde | HCHO | 1.11 × 10−11 |
Aldehyde species | ALD | 1.59 × 10−11 |
Chemical Species | Weighted Ontario Profile (2015) | Weighted Michigan Profile (P2017) | Weighted Ontario Profile (P2020) | Weighted Michigan Profile (2017) | Weighted Solvent Factor Observed |
---|---|---|---|---|---|
Isoprene | 0 | 0 | 0 | 0 | 0 |
Ethane | N/A | N/A | N/A | N/A | 0.15 |
Propane | 0.048 | 0.063 | 0.067 | 0.061 | 0.013 |
Ethene | 0 | 0 | 0 | 0 | 0.012 |
Long-chain alkene | 0.040 | 0.0054 | 0.044 | 0.0025 | 0.056 |
Long-chain alkane | 0.53 | 0.63 | 0.66 | 0.66 | 0.29 |
Multi-substituted aromatic | 0.053 | 0.068 | 0.063 | 0.045 | 0.14 |
Mono-substituted aromatic | 0.045 | 0.031 | 0.054 | 0.053 | 0.23 |
Benzene | 0 | 0 | 0 | 0.0017 | 0 |
Phenol species | 0.0020 | 0.00085 | 0.0024 | 0.0012 | 0 |
Ketone species | 0.021 | 0.017 | 0.027 | 0.018 | 0 |
Aldehyde species | 0.000033 | 0.00011 | 3.9 × 10−5 | 0.000024 | 0 |
Other | 0.25 | 0.23 | 0.34 | 0.30 | 0.095 |
Formaldehyde | 0 | 4.2E-6 | 3.1E-6 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stroud, C.A.; Zhang, J.; Boutzis, E.I.; Zhang, T.; Mashayekhi, R.; Nikiema, O.; Majdzadeh, M.; Wren, S.N.; Xu, X.; Su, Y. Impact of Solvent Emissions on Reactive Aromatics and Ozone in the Great Lakes Region. Atmosphere 2023, 14, 1094. https://doi.org/10.3390/atmos14071094
Stroud CA, Zhang J, Boutzis EI, Zhang T, Mashayekhi R, Nikiema O, Majdzadeh M, Wren SN, Xu X, Su Y. Impact of Solvent Emissions on Reactive Aromatics and Ozone in the Great Lakes Region. Atmosphere. 2023; 14(7):1094. https://doi.org/10.3390/atmos14071094
Chicago/Turabian StyleStroud, Craig A., Junhua Zhang, Elisa I. Boutzis, Tianchu Zhang, Rabab Mashayekhi, Oumarou Nikiema, Mahtab Majdzadeh, Sumi N. Wren, Xiaohong Xu, and Yushan Su. 2023. "Impact of Solvent Emissions on Reactive Aromatics and Ozone in the Great Lakes Region" Atmosphere 14, no. 7: 1094. https://doi.org/10.3390/atmos14071094
APA StyleStroud, C. A., Zhang, J., Boutzis, E. I., Zhang, T., Mashayekhi, R., Nikiema, O., Majdzadeh, M., Wren, S. N., Xu, X., & Su, Y. (2023). Impact of Solvent Emissions on Reactive Aromatics and Ozone in the Great Lakes Region. Atmosphere, 14(7), 1094. https://doi.org/10.3390/atmos14071094