Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological Data
2.2.2. Climate Model Datasets and Emission Scenarios
2.3. Method of Model Evaluation
2.3.1. Simulation Effectiveness Evaluation Methods
2.3.2. Similarity Test of Climate Model Simulation Results
2.3.3. Climate Model Screening Methods
- (1)
- Based on the results of precipitation hierarchical clustering, a threshold value was determined to categorize the precipitation into groups.
- (2)
- If there is only one model in the group, then select it directly.
- (3)
- If there is more than one model in the group, then select the model with the best simulation.
2.3.4. Correction of Model Simulation Results
3. Results
3.1. Performance Evaluation of GCMs
3.1.1. Interannual Variability Skill
3.1.2. Taylor Diagram
3.1.3. Ranking of GCMs
3.2. Climate Model Screening Results
- (1)
- Based on the precipitation hierarchical clustering results, precipitation was divided into five groups using a distance value of 0.55 as the threshold.
- (2)
- Among the precipitation patterns I to V, M17 (MPI-ESM1-2-HR) was selected as the only pattern in group III, and the patterns selected in groups I, II, IV and V were to be determined.
- (3)
- In group I, M14 (IPSL-CM6A-LR) had better IVS and S simulations than M06 (CNRM-CM6-1) and M07 (CNRM-ESM2-1), so it was selected. In group II, M02 (ACCESS-ESM1-5) was the worst model among all 22 models, so M16 (MIROC-ES2L), which was the other model in the same group, was selected. In group IV, M10 (EC-Earth3-Veg-LR) had better IVS and S simulations than the other models in the same group, except for M03 (BCC-CSM2-MR), which had the second-best IVS and S simulations, so it was selected. According to the above model selection methods and considerations, five representative models, M05 (CMCC-ESM2, Italy), M10 (EC-Earth3-Veg-LR, EU), M14 (IPSL-CM6A-LR, France), M16 (MIROC-ES2L, Japan), and M17 (MPI-ESM1-2-HR, Germany), were finally selected for impact evaluation.
3.3. Climate Change Projection Results
3.3.1. Temperature Changes
3.3.2. Precipitation Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eyring, V.; Gillett, N.; Achutarao, K.; Barimalala, R.; Barreiro, M.; Bellouin, N.; Cassou, C.; Durack, P.; Kosaka, Y.; Mcgregor, S.; et al. 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Human Influence on the Climate System; Cambridge University Press: Cambridge, UK, 2021; Chapter Three. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Touzé-Peiffer, L.; Barberousse, A.; Le Treut, H. The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research. WIREs Clim. Change 2020, 11, e648. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Raju, K.S.; Kumar, D.N. Review of approaches for selection and ensembling of GCMs. J. Water Clim. Chang. 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Navarro, A.; Merino, A.; Sánchez, J.L.; García-Ortega, E.; Martín, R.; Tapiador, F.J. Towards better characterization of global warming impacts in the environment through climate classifications with improved global models. Int. J. Climatol. 2022, 42, 5197–5217. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S.; Ismail, T.B.; Wang, X.; Dewan, A.; Asaduzzaman, M. Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmos. Res. 2022, 265, 105927. [Google Scholar] [CrossRef]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Khujanazarov, T.; Oeurng, C. Comparison of CMIP5 and CMIP6 GCM performance for flood projections in the Mekong River Basin. J. Hydrol. Reg. Stud. 2022, 40, 101035. [Google Scholar] [CrossRef]
- Pour, S.H.; Shahid, S.; Mainuddin, M. Relative performance of CMIP5 and CMIP6 models in simulating rainfall in Peninsular Malaysia, Theor. Appl. Climatol. 2022, 149, 709–725. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Qi, W.; Cai, W.; Zhao, X.; Wang, X. Multiple Climate Change Scenarios and Runoff Response in Biliu River. Water 2018, 10, 126. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 4806–4824. [Google Scholar] [CrossRef]
- Kusunoki, S.; Arakawa, O. Are CMIP5 Models Better than CMIP3 Models in Simulating Precipitation over East Asia? J. Clim. 2015, 28, 5601–5621. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Z.; He, H.; Wang, F.; Du, H.; Zong, S. Changes in start, end, and length of frost-free season across Northeast China. Int. J. Climatol. 2017, 37, 271–283. [Google Scholar] [CrossRef]
- Chen, L.; Frauenfeld, O. A Comprehensive Evaluation of Precipitation Simulations over China Based on CMIP5 Multimodel Ensemble Projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Dong, T.; Dong, W.; Guo, Y.; Chou, J.; Yang, S.; Tian, D.; Yan, D. Future temperature changes over the critical Belt and Road region based on CMIP5 models. Adv. Clim. Chang. Res. 2018, 9, 57–65. [Google Scholar] [CrossRef]
- Zhu, Q.; Hsu, K.; Xu, Y.; Yang, T. Evaluation of a new satellite-based precipitation data set for climate studies in the Xiang River basin, southern China. Int. J. Climatol. 2017, 37, 4561–4575. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Chae, S.; Chung, E. Replicability of Annual and Seasonal Precipitation by CMIP5 and CMIP6 GCMs over East Asia. KSCE J. Civ. Eng. 2022, 26, 1978–1989. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Ziarh, G.F.; Chung, E.; Wang, X. Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos. Res. 2021, 254, 105525. [Google Scholar] [CrossRef]
- De Medeiros, F.J.; De Oliveira, C.P.; Avila-Diaz, A. Evaluation of extreme precipitation climate indices and their projected changes for Brazil: From CMIP3 to CMIP6. Weather. Clim. Extrem. 2022, 38, 100511. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; García-Herrera, R.; Peña-Angulo, D.; Tomas-Burguera, M.; Domínguez-Castro, F.; Noguera, I.; Calvo, N.; Murphy, C.; Nieto, R.; Gimeno, L.; et al. Do CMIP models capture long-term observed annual precipitation trends? Clim. Dynam. 2022, 58, 2825–2842. [Google Scholar] [CrossRef]
- Kreienkamp, F.; Lorenz, P.; Geiger, T. Statistically Downscaled CMIP6 Projections Show Stronger Warming for Germany. Atmosphere 2020, 11, 1245. [Google Scholar] [CrossRef]
- Pan, H.; Jin, Y.; Zhu, X. Comparison of Projections of Precipitation over Yangtze River Basin of China by Different Climate Models. Water 2022, 14, 1888. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. J. Geophys. Res. Atmos. 2020, 125, e2020J–e33031J. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Hauser, M. Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles. Earth’s Future 2020, 8, e1474E–e2019E. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.; Rastogi, D.; Kitson, J.; Abid, M.A.; Kao, S. Evaluation of CMIP6 GCMs Over the CONUS for Downscaling Studies. J. Geophys. Res. Atmos. 2022, 127, e2022J–e36659J. [Google Scholar] [CrossRef]
- Majhi, A.; Dhanya, C.T.; Chakma, S. Quantification of model uncertainty in sub-daily extreme precipitation projections. Global Planet. Chang. 2022, 218, 103967. [Google Scholar] [CrossRef]
- Pennell, C. On the Effective Number of Climate Models; University of Utah: Salt Lake City, UT, USA, 2010. [Google Scholar]
- Reichler, T.; Kim, J. How Well Do Coupled Models Simulate Today’s Climate? B. Am. Meteorol. Soc. 2008, 89, 303–312. [Google Scholar] [CrossRef]
- Ren, J.; Wang, W.; Wei, J.; Li, H.; Li, X.; Liu, G.; Chen, Y.; Ye, S. Evolution and prediction of drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. Sci. Total Environ. 2023, 869, 161707. [Google Scholar] [CrossRef]
- Gaur, S.; Singh, R.; Bandyopadhyay, A.; Singh, R. Diagnosis of GCM-RCM-driven rainfall patterns under changing climate through the robust selection of multi-model ensemble and sub-ensembles. Clim. Chang. 2023, 176, 13. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Gebresellase, S.H.; Wu, Z.; Xu, H.; Muhammad, W.I. Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia, Theor. Appl. Climatol. 2022, 149, 1521–1547. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Guo, Y.; Chou, J.; Gao, Z. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. Int. J. Climatol. 2022, 42, 1148–1164. [Google Scholar] [CrossRef]
- Konda, G.; Vissa, N.K. Evaluation of CMIP6 models for simulations of surplus/deficit summer monsoon conditions over India. Clim. Dynam. 2023, 60, 1023–1042. [Google Scholar] [CrossRef]
- Halder, S.; Parekh, A.; Chowdary, J.S.; Gnanaseelan, C.; Kulkarni, A. Assessment of CMIP6 models’ skill for tropical Indian Ocean sea surface temperature variability. Int. J. Climatol. 2021, 41, 2568–2588. [Google Scholar] [CrossRef]
- Pimonsree, S.; Kamworapan, S.; Gheewala, S.H.; Thongbhakdi, A.; Prueksakorn, K. Evaluation of CMIP6 GCMs performance to simulate precipitation over Southeast Asia. Atmos. Res. 2023, 282, 106522. [Google Scholar] [CrossRef]
- Lu, K.; Arshad, M.; Ma, X.; Ullah, I.; Wang, J.; Shao, W. Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on CMIP6-GCMs. Int. J. Climatol. 2022, 42, 7703–7729. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Env. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, Y.; Zhang, L. Projections of precipitation change from CMIP6 based on a new downscaling method in the Poyang Lake basin, China. J. Hydrol. Reg. Stud. 2022, 42, 101138. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Sun, Y.; AghaKouchak, A.; Shen, C.; Fan, X. Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation. GeoHealth 2021, 5, e2021G–e2390G. [Google Scholar] [CrossRef]
- Sigdel, K.P.; Ghimire, N.P.; Pandeya, B.; Dawadi, B. Historical and Projected Variations of Precipitation and Temperature and Their Extremes in Relation to Climatic Indices over the Gandaki River Basin, Central Himalaya. Atmosphere 2022, 13, 1866. [Google Scholar] [CrossRef]
- Duan, K.; Yao, T.; Wang, N.; Shi, P.; Meng, Y. Changes in equilibrium-line altitude and implications for glacier evolution in the Asian high mountains in the 21st century. Sci. China Earth Sci. 2022, 65, 1308–1316. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Zhou, T.; Li, T. Enhanced Latent Heating over the Tibetan Plateau as a Key to the Enhanced East Asian Summer Monsoon Circulation under a Warming Climate. J. Clim. 2019, 32, 3373–3388. [Google Scholar] [CrossRef]
No | Models’ Name | Country Name | Institute ID | Spatial Resolution (Lon × Lat) |
---|---|---|---|---|
1 | ACCESS-CM2 | Australia | CSIRO | 144 × 192 |
2 | ACCESS-ESM1-5 | Australia | CSIRO | 145 × 192 |
3 | BCC-CSM2-MR | China | BCC | 160 × 320 |
4 | CanESM5 | Canada | CCCMA | 64 × 128 |
5 | CMCC-ESM2 | Italy | CMCC | 192 × 288 |
6 | CNRM-CM6-1 | France | CNRM | 128 × 256 |
7 | CNRM-ESM2-1 | France | CNRM | 128 × 256 |
8 | EC-Earth3 | European Union | EC-Earth-Consortium | 256 × 512 |
9 | EC-Earth3-Veg | European Union | EC-Earth-Consortium | 256 × 512 |
10 | EC-Earth3-Veg-LR | European Union | EC-Earth-Consortium | 160 × 320 |
11 | HadGEM3-GC31-LL | UK | MOHC | 144 × 192 |
12 | INM-CM4-8 | Russia | INM | 120 × 180 |
13 | INM-CM5-0 | Russia | INM | 120 × 180 |
14 | IPSL-CM6A-LR | France | IPSL | 143 × 144 |
15 | MIROC6 | Japan | MIROC | 128 × 256 |
16 | MIROC-ES2L | Japan | MIROC | 64 × 128 |
17 | MPI-ESM1-2-HR | Germany | MPI | 192 × 384 |
18 | MPI-ESM1-2-LR | Germany | MPI | 96 × 192 |
19 | MRI-ESM2-0 | Japan | MRI | 160 × 320 |
20 | NorESM2-LM | Norway | NCC | 96 × 144 |
21 | NorESM2-MM | Norway | NCC | 192 × 288 |
22 | UKESM1-0-LL | UK | MOHC | 144 × 192 |
Model No | Model Name | Temperature | Precipitation | ||||||
---|---|---|---|---|---|---|---|---|---|
IVS Value | Ranking | S Value | Ranking | IVS Value | Ranking | S Value | Ranking | ||
M01 | ACCESS-CM2 | 0.071 | 17 | 0.825 | 1 | 0.119 | 3 | 0.906 | 12 |
M02 | ACCESS-ESM1-5 | 0.023 | 10 | 0.236 | 18 | 0.352 | 7 | 0.569 | 22 |
M03 | BCC-CSM2-MR | 0.08 | 18 | 0.473 | 15 | 0.058 | 1 | 0.747 | 18 |
M04 | CanESM5 | 0.048 | 13 | 0.235 | 19 | 0.763 | 18 | 0.926 | 9 |
M05 | CMCC-ESM2 | 0.004 | 3 | 0.642 | 8 | 0.392 | 10 | 0.935 | 7 |
M06 | CNRM-CM6-1 | 0.001 | 1 | 0.611 | 10 | 0.934 | 20 | 0.688 | 20 |
M07 | CNRM-ESM2-1 | 0.065 | 15 | 0.537 | 12 | 1.186 | 21 | 0.697 | 19 |
M08 | EC-Earth3 | 0.021 | 9 | 0.825 | 2 | 0.367 | 9 | 0.989 | 2 |
M09 | EC-Earth3-Veg | 0.01 | 5 | 0.786 | 4 | 0.364 | 8 | 0.979 | 3 |
M10 | EC-Earth3-Veg-LR | 0.037 | 12 | 0.759 | 5 | 0.063 | 2 | 0.99 | 1 |
M11 | HadGEM3-GC31-LL | 0.014 | 8 | 0.588 | 11 | 0.605 | 15 | 0.939 | 6 |
M12 | INM-CM4-8 | 0.049 | 14 | 0.18 | 22 | 0.482 | 12 | 0.928 | 8 |
M13 | INM-CM5-0 | 0.013 | 7 | 0.197 | 20 | 0.59 | 14 | 0.977 | 4 |
M14 | IPSL-CM6A-LR | 0.001 | 2 | 0.653 | 7 | 0.29 | 6 | 0.765 | 17 |
M15 | MIROC6 | 0.241 | 20 | 0.519 | 13 | 0.573 | 13 | 0.881 | 14 |
M16 | MIROC-ES2L | 0.031 | 11 | 0.195 | 21 | 0.461 | 11 | 0.861 | 15 |
M17 | MPI-ESM1-2-HR | 0.01 | 6 | 0.659 | 6 | 0.236 | 5 | 0.915 | 10 |
M18 | MPI-ESM1-2-LR | 0.006 | 4 | 0.282 | 16 | 0.194 | 4 | 0.889 | 13 |
M19 | MRI-ESM2-0 | 0.157 | 19 | 0.81 | 3 | 0.714 | 17 | 0.911 | 11 |
M20 | NorESM2-LM | 0.066 | 16 | 0.264 | 17 | 0.607 | 16 | 0.629 | 21 |
M21 | NorESM2-MM | 0.292 | 21 | 0.474 | 14 | 1.218 | 22 | 0.834 | 16 |
M22 | UKESM1-0-LL | 0.535 | 22 | 0.625 | 9 | 0.788 | 19 | 0.972 | 5 |
Model No | Model Name | Precipitation | Temperature | ||||||
---|---|---|---|---|---|---|---|---|---|
IVS Value | Ranking | S Value | Ranking | IVS Value | Ranking | S Value | Ranking | ||
M05 | CMCC-ESM2 | 0.392 | 10 | 0.935 | 7 | 0.004 | 3 | 0.642 | 8 |
M10 | EC-Earth3-Veg-LR | 0.063 | 2 | 0.990 | 1 | 0.037 | 12 | 0.759 | 5 |
M14 | IPSL-CM6A-LR | 0.290 | 6 | 0.765 | 17 | 0.001 | 2 | 0.653 | 7 |
M16 | MIROC-ES2L | 0.461 | 11 | 0.861 | 15 | 0.031 | 11 | 0.195 | 21 |
M17 | MPI-ESM1-2-HR | 0.236 | 5 | 0.915 | 10 | 0.010 | 6 | 0.659 | 6 |
Scenario | Model | Year | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|---|
SSP1-2.6 | CMCC-ESM2 | 1.3 | 1.2 | 1.5 | 1.0 | 1.5 |
EC-Earth3-Veg-LR | 1.1 | 0.5 | 1.2 | 1.5 | 1.3 | |
IPSL-CM6A-LR | 2.1 | 1.9 | 1.7 | 1.9 | 2.7 | |
MIROC-ES2L | 2.4 | 2.6 | 1.9 | 2.0 | 2.9 | |
MPI-ESM1-2-HR | 0.8 | 0.4 | 0.8 | 0.7 | 1.3 | |
SSP2-4.5 | CMCC-ESM2 | 1.3 | 0.8 | 1.2 | 1.3 | 1.8 |
EC-Earth3-Veg-LR | 1.6 | 1.7 | 1.5 | 1.9 | 1.3 | |
IPSL-CM6A-LR | 2.1 | 1.7 | 2.0 | 2.7 | 2.1 | |
MIROC-ES2L | 2.9 | 2.7 | 2.6 | 3.0 | 3.2 | |
MPI-ESM1-2-HR | 1.9 | 1.7 | 1.8 | 1.9 | 2.2 | |
SSP5-8.5 | CMCC-ESM2 | 1.5 | 1.3 | 1.5 | 1.1 | 2 |
EC-Earth3-Veg-LR | 1.6 | 1.3 | 1.2 | 2.0 | 1.8 | |
IPSL-CM6A-LR | 2.5 | 2.1 | 2.1 | 2.6 | 3.2 | |
MIROC-ES2L | 2.1 | 2.6 | 1.9 | 1.9 | 1.9 | |
MPI-ESM1-2-HR | 1.3 | 1.1 | 1.2 | 1.1 | 1.6 |
Scenario | Model | Year | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|---|
SSP1-2.6 | CMCC-ESM2 | 4.4 | 18.2 | 0.9 | 1.6 | 17.5 |
EC-Earth3-Veg-LR | 10.5 | 6.1 | 11.9 | 12.1 | −1.1 | |
IPSL-CM6A-LR | 5.7 | 12.9 | 6.2 | −1.0 | −2.5 | |
MIROC-ES2L | 5.1 | 20.2 | −0.3 | 4.0 | 40.6 | |
MPI-ESM1-2-HR | 11.5 | 8.9 | 12.4 | 7.5 | 28.1 | |
SSP2-4.5 | CMCC-ESM2 | −0.2 | 15.9 | −4.6 | −1.8 | 12.4 |
EC-Earth3-Veg-LR | 13.8 | 13.4 | 15.2 | 7.1 | 23.2 | |
IPSL-CM6A-LR | 5.0 | 13.0 | 6.7 | −9.4 | 7.8 | |
MIROC-ES2L | 7.7 | 16.5 | 5.2 | 5.1 | 26.4 | |
MPI-ESM1-2-HR | 9.4 | −0.8 | 4.0 | 39.6 | 13.4 | |
SSP5-8.5 | CMCC-ESM2 | 4.2 | 19.3 | 0.7 | −0.8 | 21.7 |
EC-Earth3-Veg-LR | 9.7 | 15.1 | 10.7 | 4.6 | −8.2 | |
IPSL-CM6A-LR | 6.6 | 11.1 | 8.2 | 1.7 | −16.6 | |
MIROC-ES2L | 2.6 | 17.1 | −1.8 | 3.4 | 10.6 | |
MPI-ESM1-2-HR | 10.6 | 7.9 | 10.5 | 12.0 | 19.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Zhuo, Y.; Sun, H.; Pang, K.; An, Z. Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations. Atmosphere 2023, 14, 1429. https://doi.org/10.3390/atmos14091429
Xiao H, Zhuo Y, Sun H, Pang K, An Z. Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations. Atmosphere. 2023; 14(9):1429. https://doi.org/10.3390/atmos14091429
Chicago/Turabian StyleXiao, Heng, Yue Zhuo, Hong Sun, Kaiwen Pang, and Zhijia An. 2023. "Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations" Atmosphere 14, no. 9: 1429. https://doi.org/10.3390/atmos14091429
APA StyleXiao, H., Zhuo, Y., Sun, H., Pang, K., & An, Z. (2023). Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations. Atmosphere, 14(9), 1429. https://doi.org/10.3390/atmos14091429