Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling and Measurements
2.2. Source Apportionment Methodology
3. Results and Discussion
3.1. Atmospheric Concentration Levels
3.2. Seasonal Variation
3.3. Source Apportionment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, A.J.; Raduma, D.M.; George, L.A.; Fry, J.L. Source apportionment of trace elements and black carbon in an urban industrial area (Portland, Oregon). Atmos. Pollut. Res. 2019, 10, 784–794. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide: Executive Summary. 2021. Available online: https://www.who.int/publications/i/item/9789240034433 (accessed on 22 September 2021).
- Taghvaee, S.; Sowlat, M.H.; Diapouli, E.; Manousakas, M.I.; Vasilatou, V.; Eleftheriadis, K.; Sioutas, C. Source apportionment of the oxidative potential of fine ambient particulate matter (PM2.5) in Athens, Greece. Sci. Total Environ. 2019, 653, 1407–1416. [Google Scholar] [CrossRef]
- Kyllönen, K.; Vestemius, M.; Anttila, P.; Makkonen, U.; Aurela, M.; Wängberg, I.; Mastromonaco, M.N.; Hakola, H. Trends and source apportionment of atmospheric heavy metals at a subarctic site during 1996–2018. Atmos. Environ. 2020, 236, 117644. [Google Scholar] [CrossRef]
- Lieu, W.; Wei, J.; Cai, M.; Qian, Z.; Long, Z.; Wang, L.; Vaughn, M.G.; Aaron, H.E.; Tong, X.; Li, Y.; et al. Particulate matter pollution and asthma mortality in China: A nationwide time-stratified case cross-over study from 2015–2020. Chemosphere 2022, 308, 136316. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Talifu, D.; Ding, X.; Wang, X.; Abulizi, A.; Zhao, Q.; Zhang, X.; Zhang, R. In Vitro Bioaccessibility and Health Risk of Heavy Metals from PM2.5/PM10 in Arid Areas-Hotan City, China. Atmosphere 2023, 14, 1066. [Google Scholar] [CrossRef]
- Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Migliori, A.; Karydas, A.G.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R.B.; Jaksic, M.; Bogdanovic-Radovic, I.; et al. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Methods Phys. Res. B 2015, 349, 114–124. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Almeida, S.M.; Faria, T.; Martins, V.; Canha, N.; Diapouli, E.; Eleftheriadis, K.; Manousakas, M.I. Source apportionment of children daily exposure to particulate matter. SSRN Electron. J. 2022, 835, 155349. [Google Scholar] [CrossRef]
- Gu, X.Y.; Chu, X.; Zeng, X.L.; Bao, H.R.; Liu, X.J. Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease. Environ. Pollut. 2017, 226, 163–173. [Google Scholar] [CrossRef]
- Buoli, M.; Grassi, S.; Caldiroli, A.; Carnevali, G.S.; Mucci, F.; Iodice, S.; Cantone, L.; Pergoli, L.; Bollati, V. Is there a link between air pollution and mental disorders? Environ. Int. 2018, 118, 154–168. [Google Scholar] [CrossRef]
- Lee, S.; Kang, J.E. Impact of particulate matter and urban spatial characteristics on urban vitality using spatiotemporal big data. Cities 2022, 131, 104030. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Y.; Adams, M.D.; Liu, M.; Li, B.; Shi, T.; Li, C. Natural and human factors influencing urban particulate matter concentrations in central heating areas with long-term wearable monitoring devices. Environ. Res. 2022, 215, 114393. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Wagner, A.; Boman, J.; Gatari, M.J. Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1426–1431. [Google Scholar] [CrossRef]
- Boman, J.; Wagner, A.; Gatari, M.J. Trace elements in PM2.5 in Gothenburg, Sweden. Spectrochim. Acta Part B At. Spectroscopy 2010, 65, 478–482. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Christian, T.J.; Yokelson, R.J.; Cárdenas, B.; Molina, L.T.; Engling, G.; Hsu, S.C. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmos. Chem. Phys. 2010, 10, 565–584. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Vassilieva, E.; Swennen, R.; Cappuyns, V. Release of Trace Elements from Bottom Ash from Hazardous Waste Incinerators. Recycling 2018, 3, 36. [Google Scholar] [CrossRef]
- EEA. Heavy Metal Emissions; European Environmental Agency: 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/eea32-heavy-metal-hm-emissions-1/assessment-10 (accessed on 22 September 2021).
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- AMAP. AMAP Assessment 2002: Heavy Metals in the Arctic; first published as electronic document in 2004; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2005; p. Xvi+265. ISBN 82-7971-018-3. [Google Scholar]
- Anttila, P.; Salmi, T. Characterizing temporal and spatial patterns of urban PM10 using six years of Finnish monitoring data. Boreal Environ. Res. 2006, 11, 463–479. [Google Scholar]
- Infante, R.; Acosta, I.L. Size distribution of trace metals in Ponce, Puerto Rico air particulate matter. Atmos. Environ. Part B Urban Atmos. 1991, 25, 121–131. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G.; Aas, W. Changes of emissions and atmospheric deposition of mercury, lead and cadmium. Atmos. Environ. 2009, 43, 117–127. [Google Scholar] [CrossRef]
- EU. Council Directive 1999/30/EC of 22 April 1999 Relating to Limit Values for Sulfur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Air. Off. J. 1999, L163, 41–60. Available online: http://eurlex.europa.eu/LexUriServ.do?uri=CELEX:31999L0030 (accessed on 22 September 2021).
- EU. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Off. J. 2004, L23, 3–16. Available online: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:023:0003:0016 (accessed on 22 September 2021).
- EU. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient air Quality and Cleaner Air for Europe. Off. J. 2008, L152, 1–44. Available online: http://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050from=EN (accessed on 22 September 2021).
- EU. Commission Directive (EU) 2015/1480 of 28 August 2015 Amending Several Annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council Laying Down the Rules Concerning Reference Methods, Data Validation and Location of Sampling Points for the Assessment of Ambient Air Quality. Off. J. 2015, L226, 4–11. Available online: https://eurlex.europa.eu/eli/dir/2015/1480/oj (accessed on 22 September 2021).
- Wiklund, J.A.; Kirk, J.L.; Muir, D.C.G.; Gleason, A.; Carrier, J.; Yang, F. Atmospheric trace metal deposition to remote Northwest Ontario, Canada: Anthropogenic fluxes and inventories from 1860 to 2010. Sci. Total Environ. 2020, 749, 142276. [Google Scholar] [CrossRef]
- Kyllönen, K.; Karlsson, V.; Ruoho-Airola, T. Trace elements deposition and trends during a ten year period in Finland. Sci. Total Environ. 2009, 407, 2260–2269. [Google Scholar] [CrossRef] [PubMed]
- Laing, J.R.; Hopke, P.K.; Kopke, E.F.; Husian, L.; Dutkiewicz, V.A.; Paatero, J.; Viisanen, Y. Long-term particle measurements in Finnish Arctic: Part I—Chemical composition and trace metal solubility. Atmos. Environ. 2014, 88, 275–284. [Google Scholar] [CrossRef]
- Laing, J.R.; Hopke, P.K.; Hopke, E.F.; Husian, L.; Dutkiewicz, V.A.; Paatero, J.; Viisanen, Y. Long-term particle measurements in Finnish Arctic: Part II—Trend analysis and source location identification. Atmos. Environ. 2014, 88, 285–296. [Google Scholar] [CrossRef]
- Jalkanen, L.; Mäkinen, A.; Häsänen, E.; Juhanoja, J. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region. Sci. Total Environ. 2000, 262, 123–126. [Google Scholar] [CrossRef]
- Hosiokangas, J.; Ruuskanen, J.; Pekkanen, J. Effects of soil dust episodes and mixed fuel source on source apportionment of PM10 particles in Kuopio, Finland. Atmos. Environ. 1999, 33, 3821–3829. [Google Scholar] [CrossRef]
- Vallius, M.; Ruuskanen, J.; Mirme, A.; Pekkanen, J. Concentrations and estimated soot content of PM1, PM2.5 and PM10 in subarctic urban atmosphere. Environ. Sci. Technol. 2000, 34, 1919–1925. [Google Scholar] [CrossRef]
- Pakkanen, T.; Loukkola, K.; Korhonen, C.; Aurela, M.; Mäkelä, T.; Hillamo, R.; Aamio, P.; Koskentalo, T.; Kousa, A.; Maenhaut, W. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmos. Environ. 2001, 35, 5381–5391. [Google Scholar] [CrossRef]
- Pohjola, M.; Kousa, A.; Kukkonen, J.; Härkönen, J.; Karppinen, A.; Aamio, P.; Koskentalo, T. The spatial and temporal variation of measured urban PM10 and PM2.5 in the Helsinki metropolitan area. Urban Air Qual.-Recent Advances. 2002, 2, 189–201. [Google Scholar] [CrossRef]
- Laakso, L.; Hussein, T.; Aamio, P.; Komppula, M.; Hiltunen, V.; Viisanen, Y.; Kulmala, M. Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and arctic environments in Finland. Atmos. Environ. 2003, 37, 2629–2641. [Google Scholar] [CrossRef]
- Hosiokangas, J.; Vallius, M.; Ruuskanen, J.; Mirme, A.; Pekkanen, J. Resuspended dust episodes as an urban air-quality problem in subarctic regions. Scand. J. Work. Environ. Health 2004, 30, 28–35. [Google Scholar] [PubMed]
- Kukkonen, J.; Pohjola, M.; Sokhi, R.S.; Luhana, L.; Kitwiroon, N.; Fragkou, L.; Rantamäki, M.; Berge, E.; Ødegaard, V.; Slørdal, L.H.; et al. Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos. Environ. 2005, 39, 2759–2773. [Google Scholar] [CrossRef]
- Berg, T.; Aas, W.; Pacyna, J.; Uggerud, H.; Vdste, M. Atmospheric trace metal concentrations at Norwegian background sites during 25 years and its relation to European emissions. Atmos. Environ. 2008, 42, 7494–7501. [Google Scholar] [CrossRef]
- Kummer, U.; Pacyna, J.; Pacyna, E.; Friedrich, R. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos. Environ. 2009, 43, 640–647. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G.; Panasiuk, D.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S. Heavy metals emissions in Europe: First results from the EU ESPREME project. In Proceedings of the Joint Workshop of the UN ECE Task Force on Emission Inventories and Projections at the EU ESPREME Project, Rovaniemi, Finland, 18–19 October 2005. [Google Scholar]
- Victorin, K. Health effects of urban air pollutants. Guideline values and conditions in Sweden. Chemosphere 1993, 27, 1691–1706. [Google Scholar] [CrossRef]
- Mukai, H.; Machida, T.; Tanaka, A.; Vera, Y.P.; Uematsu, M. Lead isotope ratios in the urban air of eastern and central Russia. Atmos. Environ. 2001, 35, 2783–2793. [Google Scholar] [CrossRef]
- Shevchenko, V.; Lisitzin, A.; Vinogradova, A.; Stein, R. Heavy metals in aerosols over the seas of the Russian Arctic. Sci. Total Environ. 2003, 306, 11–25. [Google Scholar] [CrossRef]
- Voukantsis, D.; Karatzas, K.; Kukkonen, J.; Räsänen, T.; Karppinen, A.; Kolehmainen, M. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 2011, 409, 1266–1276. [Google Scholar] [CrossRef]
- Mattsson, R.; Jaakkola, T. An Analysis of Helsinki Air 1962 to 1977 Based on Trace Metals and Radionuclides. Geophysica 1979, 16, 1–42. [Google Scholar]
- Paatero, J.; Hatakka, J.; Mattsson, R.; Lehtinen, I. A Comprehensive Station for Monitoring Atmospheric Radioactivity. Radiat. Prot. Dosim. 1994, 54, 33–39. [Google Scholar] [CrossRef]
- Mattsson, R.; Paatero, J.; Hatakka, J. Automatic Alpha/Beta Analyser for Air Filter Samples-Absolute Determination of Radon Progeny by Pseudo-coincidence Techniques. Radiat. Prot. Dosim. 1996, 63, 133–139. [Google Scholar] [CrossRef]
- Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Kentarelou, V.; Zarkadas, C.; Kalogridis, A.C.; Karydas, A.C.; Eleftheriadis, K. XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-ray Spectrom. 2017, 47, 190–200. [Google Scholar] [CrossRef]
- Canonaco, F.; Crippa, M.; Slowik, J.G.; Baltensperger, U.; Prévôt, A.S.H. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 2013, 6, 3649–3661. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Poirot, R.L. Atmospheric aerosol over Vermont: Chemical composition and sources. Environ. Sci. Technol. 2001, 35, 4604–4621. [Google Scholar] [CrossRef] [PubMed]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor Modeling of Ambient Particulate Matter Data Using Positive Matrix Factorization: Review of Existing Methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Canonaco, F.; Tobler, A.; Chen, G.; Sosedova, Y.; Slowik, J.G.; Bozzetti, C.; Daellenbach, K.R.; El Haddad, I.; Crippa, M.; Huang, R.J.; et al. A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: Application to 1 year of organic aerosol data. Atmos. Meas. Tech. 2021, 14, 923–943. [Google Scholar] [CrossRef]
- Kotz, S.; Johnson, N.L.; Read, C.B. Encyclopedia of Statistical Sciences, 1st ed.; Wiley: New York, NY, USA, 2006; Volume 9. [Google Scholar]
- Nriagu, J.O. A global assessment of natural sources of atmospheric trace metals. Nature 1989, 338, 47–49. [Google Scholar] [CrossRef]
- Athanasopoulou, E.; Tombrou, M.; Russell, A.G.; Karanasiou, A.; Eleftheriadis, K.; Dandou, A. Implementation of road and soil dust emission parameterizations in the aerosol model CAMx: Applications over the greater Athens urban area affected by natural sources. J. Geophys. Res. 2010, 115, D17301. [Google Scholar] [CrossRef]
- Chapman, S. Notes of Atmospheric Sodium. Astrophys. J. 1939, 90, 309. [Google Scholar] [CrossRef]
- Zhuang, H.; Chan, C.K.; Fang, M.; Wexler, A.S. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmos. Environ. 1999, 33, 4223–4233. [Google Scholar] [CrossRef]
- Eleftheriadis, K.; Ochsenkuhn, K.M.; Lymperopoulou, T.; Karanasiou, A.; Razos, P.; Ochsenkuhn-Petropoulou, M. Influence of local and regional sources on the observed spatial and temporal variability of size resolved atmospheric aerosol mass concentrations and water-soluble species in the Athens metropolitan area. Atmos. Environ. 2014, 97, 252–261. [Google Scholar] [CrossRef]
- Lucarelli, F.; Mandò, P.A.; Nava, S.; Prati, P.; Zucchiatti, A. One-year study of the elemental composition and source apportionment of PM10 aerosols in Florence, Italy. J. Air Waste Manag. Assoc. 2014, 54, 1372–1382. [Google Scholar] [CrossRef]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prevôt, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Santoso, M.; Hopke, P.K.; Hidayat, A.; Dwiana, D.L. Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. Sci. Total Environ. 2008, 397, 229–237. [Google Scholar] [CrossRef]
- Pacyna, J. Workpackage 02-D01b Source-Sector Analysis and Evaluation Report. Estimation of Willingness-to-Pay to Reduce Risks of Exposure to Heavy Metals and Cost-Benefit Analysis for Reducing Heavy Metals Occurrence in Europe. 2007. Available online: http://espreme.ier.uni-stuttgart.de/ (accessed on 22 September 2021).
- EEA. European Union Emission Inventory Report 1990-2017 under the UNECE Convection on Long-Range Transboundary Air Pollution (LRTAP), EEA Report No 08/2019. 2019; ISBN 978-92-9480-078-7.
- Virkkula, A.; Teinilä, K.; Hillamo, R.; Stohl, A. A decade of trace gas measurements using DOAS in Finnish Lapland. Boreal Environ. Res. 2003, 8, 351–363. [Google Scholar]
- Jokiniemi, J.; Raunemaa, T.; Mattsson, R.; Hautojärvi, A. Analysis of aerosol samples from radioactivity registration stations. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1984, 3, 451–453. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- ECHA. Inclusion of Substances of Very High Concern in the Candidate List—Decision of the European Chemicals Agency ED/169/2012. 2012. Available online: https://echa.europa.eu/documents/10.162/0b417b76-b533-42a1-9bd2-519fldc1990d (accessed on 22 September 2021).
- NESTE. Bensiiniopas, Neste Oyj; Engineering Services Company: Espoo, Finland, 2022. [Google Scholar]
- Kloprogge, J.T.; Ponce, C.P.; Loomis, T.A. The Periodic Table: Nature’s Building Blocks; Kloprogge, J.T., Ponce, C.P., Loomis, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Manousakas, M.; Diapouli, E.; Belis, C.A.; Vasilatou, V.; Gini, M.; Lucarelli, F.; Querol, X.; Eleftheriadis, K. Quantitative Assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large Metropolitan area. Environ. Res. 2021, 192, 110257. [Google Scholar] [CrossRef]
- Kim, E.; Hopke, P.K. Source characterization of ambient fine particles at multiple sites in the Seattle area. Atmos. Environ. 2008, 42, 6047–6056. [Google Scholar] [CrossRef]
- Lopes, D.; Rafael, S.; Ferreira, J.; Relvas, H.; Almeida, S.M.; Faria, T.; Martins, V.; Diapouli, E.; Manousakas, M.; Vasilatou, V.; et al. Assessing the levels of regulated metals in an urban area: A modeling and experimental approach. Atmos. Environ. 2022, 290, 119366. [Google Scholar] [CrossRef]
- Traficom. Open Data for Vehicles; The Finnish Transport and Communications Agency Traficom: Helsinki, Finland, 2022. [Google Scholar]
- Gini, M.; Manousakas, M.I.; Karydas, A.G.; Eleftheriadis, K. Mass size distributions composition and dose estimates of particulate matter in Saharan dust outbreaks. Environ. Pollut. 2022, 298, 118768. [Google Scholar] [CrossRef]
- Korhonen, S.; Loukkola, K.; Portin, H.; Niemi, J. Ilmanlaatu Pääkaupunkiseudullavuonnav2021—Vuosiraportti; HSY:n julkaisuja 3/2022; Helsingin seudunympäristöpalvelut -kuntayhtymä: Helsinki, Finland, 2022. [Google Scholar]
Element | (MU) (%) | Number of Samples | LOD (μg m−3) |
---|---|---|---|
Na | 30.2 | 599 | 0.0307 |
Al | 16.0 | 599 | 0.0098 |
Si | 15.8 | 599 | 0.0028 |
S | 9.1 | 599 | 0.0009 |
Cl | 15.8 | 599 | 0.0009 |
K | 9.1 | 599 | 0.0009 |
Ca | 10.4 | 599 | 0.0068 |
Ti | 10.9 | 599 | 0.0025 |
V | 13.2 | 599 | 0.0015 |
Cr | 21.2 | 599 | 0.0025 |
Mn | 16.8 | 599 | 0.0012 |
Fe | 10.4 | 599 | 0.0012 |
Ni | 17.8 | 599 | 0.0009 |
Cu | 11.2 | 599 | 0.0012 |
Zn | 12.1 | 599 | 0.0015 |
Br | 18.0 | 599 | 0.0012 |
Pb | 13.5 | 599 | 0.0022 |
Element | Min | Max | Median | Mean | St. Dev. | Skewness | Kurtosis | Total Decrease |
---|---|---|---|---|---|---|---|---|
(μg m−3) | (%) | |||||||
Na | 0.07 | 1.37 | 0.26 | 0.30 | 0.19 | 2.12 | 6.79 | −74.0 |
Al | <0.01 | 1.04 | 0.09 | 0.13 | 0.13 | 2.88 | 11.79 | −86.0 |
Si | 0.03 | 3.84 | 0.38 | 0.55 | 0.58 | 2.96 | 11.17 | −88.0 |
S | 0.09 | 5.12 | 0.84 | 1.02 | 0.71 | 1.53 | 3.31 | −82.0 |
Cl | <0.01 | 0.49 | 0.02 | 0.03 | 0.06 | 6.03 | 46.16 | −22.0 |
K | <0.01 | 1.21 | 0.17 | 0.22 | 0.15 | 2.22 | 7.82 | −82.0 |
Ca | 0.01 | 1.76 | 0.17 | 0.21 | 0.19 | 3.40 | 17.65 | −89.0 |
Ti | <0.01 | 0.15 | 0.01 | 0.02 | 0.01 | 4.08 | 27.08 | −80.0 |
V | <0.01 | 0.14 | 0.01 | 0.02 | 0.02 | 1.88 | 4.10 | −89.0 |
Cr | <0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 1.70 | 4.07 | −82.0 |
Mn | <0.01 | 0.18 | 0.01 | 0.01 | 0.01 | 6.54 | 63.16 | −77.0 |
Fe | 0.01 | 1.56 | 0.18 | 0.21 | 0.15 | 3.60 | 23.58 | −77.0 |
Ni | <0.01 | 0.04 | 0.00 | 0.01 | 0.01 | 1.97 | 4.55 | −61.0 |
Cu | <0.01 | 0.44 | 0.02 | 0.03 | 0.04 | 5.36 | 40.71 | −37.0 |
Zn | <0.01 | 0.44 | 0.04 | 0.06 | 0.05 | 2.65 | 10.08 | −72.0 |
Br | <0.01 | 0.11 | 0.01 | 0.01 | 0.02 | 3.81 | 16.60 | −32.0 |
Pb | <0.01 | 1.96 | 0.10 | 0.17 | 0.23 | 3.67 | 19.91 | −95.0 |
Na | Al | Si | S | Cl | K | Ca | Ti | V | Cr | Mn | Fe | Ni | Cu | Zn | Br | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na | 1 | ||||||||||||||||
Al | 0.87 | 1 | |||||||||||||||
Si | 0.89 | 0.86 | 1 | ||||||||||||||
S | 0.81 | 0.83 | 0.84 | 1 | |||||||||||||
Cl | −0.24 | −0.32 | −0.21 | −0.30 | 1 | ||||||||||||
K | 0.91 | 0.81 | 0.93 | 0.85 | −0.13 | 1 | |||||||||||
Ca | 0.85 | 0.83 | 0.90 | 0.79 | −0.18 | 0.92 | 1 | ||||||||||
Ti | 0.88 | 0.89 | 0.81 | 0.82 | −0.21 | 0.86 | 0.84 | 1 | |||||||||
V | 0.80 | 0.83 | 0.83 | 0.90 | −0.31 | 0.78 | 0.69 | 0.80 | 1 | ||||||||
Cr | 0.76 | 0.72 | 0.76 | 0.83 | −0.34 | 0.68 | 0.59 | 0.67 | 0.93 | 1 | |||||||
Mn | 0.34 | 0.61 | 0.45 | 0.31 | −0.13 | 0.42 | 0.44 | 0.44 | 0.26 | 0.18 | 1 | ||||||
Fe | 0.87 | 0.89 | 0.88 | 0.81 | −0.15 | 0.89 | 0.94 | 0.91 | 0.77 | 0.67 | 0.42 | 1 | |||||
Ni | 0.82 | 0.83 | 0.82 | 0.87 | −0.28 | 0.78 | 0.70 | 0.83 | 0.96 | 0.87 | 0.26 | 0.79 | 1 | ||||
Cu | 0.51 | 0.43 | 0.38 | 0.29 | −0.11 | 0.43 | 0.40 | 0.48 | 0.34 | 0.40 | 0.08 | 0.50 | 0.38 | 1 | |||
Zn | 0.86 | 0.70 | 0.84 | 0.68 | −0.12 | 0.89 | 0.81 | 0.76 | 0.66 | 0.60 | 0.29 | 0.81 | 0.72 | 0.62 | 1 | ||
Br | 0.50 | 0.54 | 0.33 | 0.43 | −0.02 | 0.36 | 0.35 | 0.40 | 0.42 | 0.32 | 0.19 | 0.40 | 0.40 | 0.21 | 0.22 | 1 | |
Pb | 0.81 | 0.77 | 0.96 | 0.84 | −0.26 | 0.87 | 0.78 | 0.69 | 0.86 | 0.82 | 0.37 | 0.75 | 0.82 | 0.28 | 0.77 | 0.29 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, E.; Papagiannis, S.; Manousakas, M.I.; Betsou, C.; Eleftheriadis, K.; Paatero, J.; Papadopoulou, L.; Ioannidou, A. Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period. Atmosphere 2023, 14, 1430. https://doi.org/10.3390/atmos14091430
Ioannidou E, Papagiannis S, Manousakas MI, Betsou C, Eleftheriadis K, Paatero J, Papadopoulou L, Ioannidou A. Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period. Atmosphere. 2023; 14(9):1430. https://doi.org/10.3390/atmos14091430
Chicago/Turabian StyleIoannidou, Eleftheria, Stefanos Papagiannis, Manousos Ioannis Manousakas, Chrysoula Betsou, Konstantinos Eleftheriadis, Jussi Paatero, Lambrini Papadopoulou, and Alexandra Ioannidou. 2023. "Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period" Atmosphere 14, no. 9: 1430. https://doi.org/10.3390/atmos14091430
APA StyleIoannidou, E., Papagiannis, S., Manousakas, M. I., Betsou, C., Eleftheriadis, K., Paatero, J., Papadopoulou, L., & Ioannidou, A. (2023). Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period. Atmosphere, 14(9), 1430. https://doi.org/10.3390/atmos14091430