Spatial and Temporal Evolution Characteristics of Water Conservation in the Three-Rivers Headwater Region and the Driving Factors over the Past 30 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Source and Preprocessing
2.3. Methods
2.3.1. Water Conservation Quantification
2.3.2. Calibration Method of Evapotranspiration Coefficient in Grassland Based on Interannual Variation in Vegetation
2.3.3. Geographical Detector
2.3.4. Trend Changes and Correlation Analysis
2.3.5. Total Research Approach
3. Results
3.1. Characteristics of Interannual Variation in Water Conservation
3.2. Spatial and Temporal Distributions of Water Conservation
3.3. Spatial and Temporal Driving Factors of Water Conservation
3.3.1. Drivers of Interannual Change
3.3.2. Drivers of Spatial Heterogeneity
4. Discussion
4.1. Interannual Variation in Water Conservation
4.2. Factors Affecting Temporal and Spatial Differentiation of Water Conservation
4.3. Adaptation to Future Climate Change
4.4. Limitations and Future Work
5. Conclusions
- (1)
- WC in the TRHR exhibits a spatial pattern with high values in the south and low values in the north. WC significantly increased (1.4 mm/yr, p < 0.05) from 1991 to 2020. Compared with 1991–1999, the annual average value of WC in 2000–2020 increased by 28.17%. Over the past 30 years, WC improved in 78.17% of the regions (p < 0.5).
- (2)
- The increase in precipitation over the past three decades has had a significant positive impact on WC (R = 0.97, p < 0.01). However, the growth in potential evapotranspiration has had a significant inhibitory effect on WC since 2000 (R = –0.5, p < 0.05).
- (3)
- The spatial variation in WC is influenced primarily by precipitation, followed by vegetation and potential evapotranspiration. The interaction among these factors has a stronger explanatory power for WC than individual factors alone. The interaction between precipitation and other influencing factors demonstrates the greatest explanatory power. The combined influence of precipitation and vegetation accounts for approximately 79.1% of the WC distribution across the study area. However, the dominant interaction factors for WC vary in different eco-geographical regions. In the north-central and western regions (HIC1) with low vegetation, the interaction between annual precipitation and potential evapotranspiration explains 65% of the variation in WC, making it the dominant interaction factor in the region. In the eastern and central-southern areas (HIB1 and HIIC2), the interaction between annual precipitation and vegetation exhibits the strongest influence.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, Y.; Fu, B.J.; Liu, Y.X.; Li, Y.; Wang, S.; Zhan, T.Y.; Wang, Y.J.; Gao, D.X. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol. 2022, 314, 108809. [Google Scholar] [CrossRef]
- Yao, T.D.; Wu, G.J.; Xu, B.Q.; Wang, W.C.; Gao, J.; An, B.S. Asian Water Tower Change and Its Impacts. Bull. Chin. Acad. Sci. 2019, 34, 1203–1209. (In Chinese) [Google Scholar]
- Xue, J.; Li, Z.X.; Feng, Q.; Gui, J.; Zhang, B.J. Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Xu, W.H.; Xiao, Y.; Zhang, J.J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.G.; Polasky, S. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Zhang, Y.Q. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agric. For. Meteorol. 2022, 317, 108887. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiong, Q.L.; Liang, P.H.; Xiao, Q. Potential risk to water resources under eco-restoration policy and global change in the Tibetan Plateau. Environ. Res. Lett. 2021, 16, 094004. [Google Scholar] [CrossRef]
- Shao, Q.Q.; Cao, W.; Fan, J.W.; Huang, L.; Xu, X.L. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 2017, 27, 183–204. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.H.; Liu, Y. Relative Contributions of Land Use and Climate Change to Water Supply Variations over Yellow River Source Area in Tibetan Plateau during the Past Three Decades. PLoS ONE 2015, 10, e0123793. [Google Scholar] [CrossRef] [PubMed]
- Šatalová, B.; Kenderessy, P. Assessment of water retention function as tool to improve integrated watershed management (case study of Poprad river basin, Slovakia). Sci. Total Environ. 2017, 599, 1082–1089. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.L.; Wang, F.F.; Liu, Y.X.; Han, Z.L.; Wang, Q.B.; Yu, L.; Dong, Y.H.; Sun, J. Multilevel driving factors affecting ecosystem services and biodiversity dynamics on the Qinghai-Tibet Plateau. J. Clean. Prod. 2023, 396, 136448. [Google Scholar] [CrossRef]
- Liu, G.B.; Shao, Q.Q.; Fan, J.W.; Ning, J.; Huang, H.B.; Liu, S.C.; Zhang, X.Y.; Niu, L.; Liu, J.Y. Spatio-Temporal Changes, Trade-Offs and Synergies of Major Ecosystem Services in the Three-River Headwaters Region from 2000 to 2019. Remote Sens. 2022, 14, 5349. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ye, A.Z.; Peng, D.Z.; Miao, C.Y.; Di, Z.H.; Gong, W. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Kurzweil, J.R.; Metlen, K.; Abdi, R.; Strahan, R.; Hogue, T.S. Surface water runoff response to forest management: Low-intensity forest restoration does not increase surface water yields. For. Ecol. Manag. 2021, 496, 119387. [Google Scholar] [CrossRef]
- Wen, X.; Shao, H.Y.; Wang, Y.; Lv, L.F.; Xian, W.; Shao, Q.F.; Shu, Y.; Yin, Z.Q.; Liu, S.H.; Qi, J.G. Assessment of the Spatiotemporal Impact of Water Conservation on the Qinghai–Tibet Plateau. Remote Sens. 2023, 15, 3175. [Google Scholar] [CrossRef]
- Yang, M.Y.; Dong, S.K.; Dong, Q.M.; Xu, Y.D.; Zhi, Y.L.; Liu, W.T.; Zhao, X.Y. Trade-offs in ecological, productivity and livelihood dimensions inform sustainable grassland management: Case study from the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2021, 313, 107377. [Google Scholar] [CrossRef]
- Wu, H.F.; Hu, B.A.; Yan, J.X.; Cheng, X.Q.; Yi, P.H.; Kang, F.F.; Han, H.R. Mixed plantation regulates forest floor water retention and temperature sensitivity in restored ecosystems on the Loess Plateau, China. Catena 2023, 222, 106838. [Google Scholar] [CrossRef]
- Wu, X.; Shi, W.J.; Guo, B.; Tao, F.L. Large spatial variations in the distributions of and factors affecting forest water retention capacity in China. Ecol. Indic. 2020, 113, 106152. [Google Scholar] [CrossRef]
- de Figueiredo, T.; Royer, A.C.; Fonseca, F.; de Araujo Schutz, F.C.; Hernandez, Z. Regression Models for Soil Water Storage Estimation Using the ESA CCI Satellite Soil Moisture Product: A Case Study in Northeast Portugal. Water 2021, 13, 37. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Q.; Qin, H.P.; Deng, W. Modeling the effects of vegetation dynamics on the hydrological performance of a bioretention system. J. Hydrol. 2023, 620, 129473. [Google Scholar] [CrossRef]
- Chen, S.Z.; Fu, Y.H.; Wu, Z.F.; Hao, F.H.; Hao, Z.C.; Guo, Y.H.; Geng, X.J.; Li, X.Y.; Zhang, X.; Tang, J. Informing the SWAT model with remote sensing detected vegetation phenology for improved modeling of ecohydrological processes. J. Hydrol. 2023, 616, 128817. [Google Scholar] [CrossRef]
- Trautmann, T.; Koirala, S.; Carvalhais, N.; Güntner, A.; Jung, M. The importance of vegetation to understand terrestrial water storage variations. Hydrol. Earth Syst. Sci. 2022, 26, 1089–1109. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Zheng, D.; Fao, R. A Study on the Eco-Geographic Regional System of China. In Proceedings of the FAO FRA2000 Global Ecological Zoning Workshop, Cambridge, UK, 28–30 January 1999. [Google Scholar]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.G.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhao, J.; Fu, J.W.; Wei, W. Effects of the Grain for Green Program on the water ecosystem services in an arid area of China-Using the Shiyang River Basin as an example. Ecol. Indic. 2019, 104, 659–668. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. Invest Version 3.2. 0 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2015. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Jiang, C.; Li, D.Q.; Wang, D.W.; Zhang, L.B. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper, 56; FAO: Rome, Italy, 1998; pp. 1–289. [Google Scholar]
- Li, P.; Peng, C.H.; Wang, M.; Luo, Y.P.; Li, M.P.; Zhang, K.R.; Zhang, D.L.; Zhu, Q.A. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 2018, 637, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, C.Y.; Pan, J.H.; Liu, Y.Y.; Yang, D.H. Spatial and Temporal Distributions of Evapotranspiration in Gannan Grassland Based on MODIS Data. Resour Sci. 2011, 33, 341–346. (In Chinese) [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.Z.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Sun, M.L.; Hu, J.; Chen, X.L.; Lü, Y.H.; Yang, L.X. Comparison of Five Models for Estimating the Water Retention Service of a Typical Alpine Wetland Region in the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 6306. [Google Scholar] [CrossRef]
- Lian, J.J.; Li, D.F.; Huang, M.B.; Chen, H.S. Evaluation of remote sensing-based evapotranspiration estimates using a water transfer numerical simulation under different vegetation conditions in an arid area. Hydrol. Process. 2018, 32, 1801–1813. [Google Scholar] [CrossRef]
- Luan, J.K.; Miao, P.; Tian, X.Q.; Li, X.J.; Ma, N.; Faiz, M.A.; Xu, Z.W.; Zhang, Y.Q. Estimating hydrological consequences of vegetation greening. J. Hydrol. 2022, 611, 128018. [Google Scholar] [CrossRef]
- Peng, H.; Jia, Y.W.; Niu, C.W.; Gong, J.G.; Hao, C.F.; Gou, S. Eco-hydrological simulation of soil and water conservation in the Jinghe River Basin in the Loess Plateau, China. J. Hydro Environ. Res. 2015, 9, 452–464. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, L.; Zhou, J.; Chai, C.H.; Hu, Z.D.; Zhao, L.; Wang, S.F.; Fan, M.T. Impacts of frozen ground degradation and vegetation greening on upper Brahmaputra runoff during 1981–2019. Int. J. Clim. 2023, 43, 3768–3781. [Google Scholar] [CrossRef]
- Shen, M.G.; Wang, S.P.; Jiang, N.; Sun, J.P.; Cao, R.Y.; Ling, X.F.; Fang, B.; Zhang, L.; Zhang, L.H.; Xu, X.Y. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Rawat, K.S.; Singh, S.K.; Bala, A.; Szabó, S. Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agric. Water Manag. 2019, 213, 922–933. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.B. Effect of ecological restoration and climate change on ecosystems: A case study in the Three-Rivers Headwater Region, China. Environ. Monit. Assess. 2016, 188, 382. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Khorchani, M.; Nadal-Romero, E.; Lasanta, T.; Tague, C. Carbon sequestration and water yield tradeoffs following restoration of abandoned agricultural lands in Mediterranean mountains. Environ. Res. 2022, 207, 112203. [Google Scholar] [CrossRef]
- Maurya, S.; Srivastava, P.K.; Gupta, M.; Islam, T.; Han, D. Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization. Water Resour. Manag. 2016, 30, 5385–5405. [Google Scholar] [CrossRef]
- Wang, Y.F.; Lv, W.W.; Xue, K.; Wang, S.P.; Zhang, L.i.; Hu, R.H.; Zeng, H.; Xu, X.L.; Li, Y.M.; Jiang, L.L.; et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- Hou, L.L.; Xia, F.; Chen, Q.H.; Huang, J.K.; He, Y.; Rose, N.; Rozelle, S. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 2021, 12, 4683. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hu, H.F.; Sun, W.J.; Zhu, J.J.; Liu, G.B.; Zhou, W.M.; Zhang, Q.F.; Shi, P.L.; Liu, X.P.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.Y.; Wang, J.S.; Mantravadi, V.S.; Zhang, L.; Liu, G.Z. Effect of climate and ecological restoration on vegetation changes in the “Three-River Headwaters” region based on remote sensing technology. Environ. Sci. Pollut. Res. 2022, 29, 16436–16448. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.Q.; Liu, S.C.; Ning, J.; Liu, G.B.; Yang, F.; Zhang, X.; Niu, L.N.; Huang, H.B.; Fan, J.W.; Liu, J.Y. Assessment of ecological benefits of key national ecological projects in China in 2000–2019 using remote sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar]
- Huang, K.; Zhang, Y.J.; Zhu, J.; Liu, Y.J.; Zu, J.X.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Chen, R.; Duan, K.; Shang, W.; Shi, P.; Meng, Y.; Zhang, Z. Increase in seasonal precipitation over the Tibetan Plateau in the 21st century projected using CMIP6 models. Atmos. Res. 2022, 277, 106306. [Google Scholar] [CrossRef]
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y.; Rossel, R.A.V.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Han, D.L.; Huang, J.P.; Ding, L.; Zhang, G.L.; Liu, X.; Li, C.; Yang, F. Breaking the Ecosystem Balance Over the Tibetan Plateau. Earth’s Future 2022, 10, EF002890. [Google Scholar] [CrossRef]
- Li, X.Y.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.D.; Tian, F.Q.; Sun, Z.L.; Wang, G.Q. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Change 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, K.K.; Singh, V.P.; Song, C.Q.; Xu, C.Y.; Sun, P. Is Himalayan-Tibetan Plateau “drying”? Historical estimations and future trends of surface soil moisture. Sci. Total Environ. 2019, 658, 374–384. [Google Scholar] [CrossRef]
- Liu, Y.L.; Kumar, M.; Katul, G.G.; Feng, X.; Konings, A.G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 2020, 10, 691–695. [Google Scholar] [CrossRef]
- Bai, Y.F.; Guo, C.C.; Degen, A.A.; Ahmad, A.A.; Wang, W.Y.; Zhang, T.; Li, W.Y.; Ma, L.; Huang, M.; Zeng, H.J.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554, 34–41. [Google Scholar] [CrossRef]
- Cui, J.P.; Lian, X.; Huntingford, C.; Gimeno, L.; Wang, T.; Ding, J.Z.; He, M.Z.; Xu, H.; Chen, A.P.; Gentine, P. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 2022, 15, 982–988. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.S. Vegetation green-up date is more sensitive to permafrost degradation than climate change in spring across the northern permafrost region. Glob. Change Biol. 2022, 28, 1569–1582. [Google Scholar] [CrossRef]
- Di, Y.P.; Zhang, Y.J.; Zeng, H.; Tang, Z. Effects of changed Asian water tower on Tibetan Plateau ecosystem: A review. Bull. Chin. Acad. Sci. 2019, 34, 1322–1331. [Google Scholar]
- Zhang, J.L.; Zhou, L.L.; Ma, R.M.; Jia, Y.F.; Yang, F.; Zhou, H.Y.; Cao, X.Y. Influence of soil moisture content and soil and water conservation measures on time to runoff initiation under different rainfall intensities. Catena 2019, 182, 104172. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.B.; Zhang, X.L. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.H.; Xie, G.D.; Xiao, Y. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar]
- Li, S.H.; Yu, D.Y.; Huang, T.; Hao, R.F. Identifying priority conservation areas based on comprehensive consideration of biodiversity and ecosystem services in the Three-River Headwaters Region, China. J. Clean. Prod. 2022, 359, 132082. [Google Scholar] [CrossRef]
- Jia, G.Y.; Hu, W.M.; Zhang, B.; Li, G.; Shen, S.Y.; Gao, Z.H.; Li, Y. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Sci. Total Environ. 2022, 828, 154483. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Shao, Q.; Fan, J.; Huang, H.; Liu, J.; He, J. Assessment of Restoration Degree and Restoration Potential of Key Ecosystem-Regulating Services in the Three-River Headwaters Region Based on Vegetation Coverage. Remote Sens. 2023, 15, 523. [Google Scholar] [CrossRef]
- Wang, S.Z.; Fan, J.W.; Li, Y.Z.; Wu, D.; Zhang, Y.X.; Huang, L. Dynamic response of water retention to grazing activity on grassland over the Three River Headwaters region. Agric. Ecosyst. Environ. 2019, 286, 106662. [Google Scholar] [CrossRef]
- Ning, X.G.; Zhu, N.; Liu, Y.F.; Wang, H. Quantifying impacts of climate and human activities on the grassland in the Three-River Headwater Region after two phases of Ecological Project. Geogr. Sustain. 2022, 3, 164–176. [Google Scholar] [CrossRef]
Data Type | Data Format | Data Source |
---|---|---|
Meteorological data (precipitation, temperature, relative humidity, wind speed) | Point-based, daily, from 1991 to 2020 | National Climate Center of the China Meteorological Administration (http://data.cma.cn/, accessed on 1 September 2022). A 500 m resolution grid is interpolated by using the professional meteorological interpolation software ANUSPLINA version 4.4 (http://fennerschool.anu.edu.au/files/anusplin44.pdf, accessed on 1 September 2022) |
LAI | Grid, 5 km resolution, from 1991 to 2020 | Global Mapping (GLOBMAP) LAI version 3 dataset (https://zenodo.org/record/4700264, accessed on 1 September 2022) |
NDVI | Grid, 1 km resolution, from 1991 to 2020 | https://zenodo.org/record/6295928, accessed on 1 September 2022 |
Soil properties | Grid, 1 km resolution, 2000 | Harmonized World Soil Database (HWSD) v1.2 (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 1 September 2022) |
Soil depth | Grid, 1 km resolution, 2000 | Soil Data Center, National Earth System Science Data Sharing Infrastructure, National Science and Technology Infrastructure of China (http://soil.geodata.cn, accessed on 1 September 2022) |
Land use (1990, 1995, 2000, 2005, 2010, 2015, 2020) | Grid, 30 m resolution, 2000, 2005, 2010, 2015, and 2020 | Resources and Environmental Sciences Data Center (RESDC), Chinese Academy of Sciences (http://www.resdc.cn, accessed on 1 September 2022) |
Digital elevation model (DEM) | Grid, 1 km resolution, 2020 | Resources and Environmental Sciences Data Center (RESDC), Chinese Academy of Sciences (http://www.resdc.cn, accessed on 1 September 2022) |
Driving Element | 1991–2000 | 2000–2020 | 1991–2020 |
---|---|---|---|
Precipitation | 0.92 ** | 0.97 ** | 0.97 ** |
Potential evapotranspiration | 0.13 | –0.5 * | –0.19 |
LAI | 0.07 | 0.36 | 0.33 |
(1) Influencing Factors | Annual Average Precipitation | Annual Average Potential Evapotranspiration | LAI | Slope | Altitude |
q value | 0.73 ** | 0.207 ** | 0.582 ** | 0.109 ** | 0.221 ** |
(2) Influencing Factors | Annual Average Precipitation | Annual Average Potential Evapotranspiration | NDVI | Slope | Altitude |
q value | 0.746 ** | 0.185 ** | 0.568 ** | 0.116 ** | 0.242 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Yin, Y. Spatial and Temporal Evolution Characteristics of Water Conservation in the Three-Rivers Headwater Region and the Driving Factors over the Past 30 Years. Atmosphere 2023, 14, 1453. https://doi.org/10.3390/atmos14091453
Pan Y, Yin Y. Spatial and Temporal Evolution Characteristics of Water Conservation in the Three-Rivers Headwater Region and the Driving Factors over the Past 30 Years. Atmosphere. 2023; 14(9):1453. https://doi.org/10.3390/atmos14091453
Chicago/Turabian StylePan, Yao, and Yunhe Yin. 2023. "Spatial and Temporal Evolution Characteristics of Water Conservation in the Three-Rivers Headwater Region and the Driving Factors over the Past 30 Years" Atmosphere 14, no. 9: 1453. https://doi.org/10.3390/atmos14091453
APA StylePan, Y., & Yin, Y. (2023). Spatial and Temporal Evolution Characteristics of Water Conservation in the Three-Rivers Headwater Region and the Driving Factors over the Past 30 Years. Atmosphere, 14(9), 1453. https://doi.org/10.3390/atmos14091453