Concurrent Particulate Matter and Heat Exposure in Working and Non-Working Women in Rural Guatemala
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Design
2.2. Particulate Matter Measurement
2.3. Heat Exposure Monitoring
2.4. Lab Analyses
2.5. Statistical Analysis
3. Results
3.1. Particulate Matter Exposure
3.2. Heat Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarofim, M.C.; Saha, S.; Hawkin, M.D.; Mills, D.M.; Hess, J.; Horton, R.; Kinney, P.; Schwartz, J.; St, J.A. Ch. 2: Temperature-Related Death and Illness. In The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.M.; Maycock, T.K.; Stewart, B.C. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II: Report-in-Brief; U.S. Global Change Research Program: Washington, DC, USA, 2018. [Google Scholar]
- Crimmins, A.; Balbus, J.; Gamble, J.L.; Beard, C.B.; Bell, J.E.; Dodgen, D.; Eisen, R.J.; Fann, N.; Hawkins, M.D.; Herring, S.C.; et al. Ch. 9: Populations of concern. In The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; Program USGCR, Ed.; U.S. Global Change Research Program: Washington, DC, USA, 2016. [Google Scholar]
- World Health Organization. Africa Region: Air Pollution. 2023. Available online: https://www.afro.who.int/health-topics/air-pollution (accessed on 14 August 2024).
- Kjellstrom, T.; Holmer, I.; Lemke, B. Workplace heat stress, health and productivity—An increasing challenge for low and middle-income countries during climate change. Glob. Health Action 2009, 2, 2047. [Google Scholar] [CrossRef] [PubMed]
- Birkmann, J.; Liwenga, E.; Pandey, R.; Boyd, E.; Djalante, R.; Gemenne, F.; Leal Filho, W.; Pinho, P.F.; Stringer, L.; Wrathall, D. Poverty, Livelihoods and Sustainable Development. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Sahu, S.; Sett, M.; Kjellstrom, T. Heat Exposure, Cardiovascular Stress and Work Productivity in Rice Harvesters in India: Implications for a Climate Change Future. Ind. Health 2013, 51, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Schwarz, L.; Rosenthal, N.; Marlier, M.E.; Benmarhnia, T. Exploring spatial heterogeneity in synergistic effects of compound climate hazards: Extreme heat and wildfire smoke on cardiorespiratory hospitalizations in California. Sci. Adv. 2024, 10, eadj7264. [Google Scholar] [CrossRef] [PubMed]
- El Khayat, M.; Halwani, D.A.; Hneiny, L.; Alameddine, I.; Haidar, M.A.; Habib, R.R. Impacts of Climate Change and Heat Stress on Farmworkers’ Health: A Scoping Review. Front. Public Health 2022, 10, 782811. [Google Scholar] [CrossRef]
- Oztas, D.; Kurt, B.; Koc, A.; Akbaba, M. Living Conditions, Access to Healthcare Services, and Occupational Health and Safety Conditions of Migrant Seasonal Agricultural Workers in the Cukurova Region. J. Agromed. 2018, 23, 262–269. [Google Scholar] [CrossRef]
- Tigchelaar, M.; Battisti, D.S.; Spector, J.T. Work adaptations insufficient to address growing heat risk for US agricultural workers. Environ. Res. Lett. 2020, 15, 094035. [Google Scholar] [CrossRef] [PubMed]
- Butler-Dawson, J.; Krisher, L.; Yoder, H.; Dally, M.; Sorensen, C.; Johnson, R.J.; Asensio, C.; Cruz, A.; Johnson, E.C.; Carlton, E.J.; et al. Evaluation of heat stress and cumulative incidence of acute kidney injury in sugarcane workers in Guatemala. Int. Arch. Occup. Environ. Health 2019, 92, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Sanchez-Lozada, L.G.; Newman, L.S.; Lanaspa, M.A.; Diaz, H.F.; Lemery, J.; Rodriguez-Iturbe, B.; Tolan, D.R.; Butler-Dawson, J.; Sato, Y.; et al. Climate Change and the Kidney. Ann. Nutr. Metab. 2019, 74, 38–44. [Google Scholar] [CrossRef]
- Jayasumana, C. Chronic Interstitial Nephritis in Agricultural Communities (CINAC) in Sri Lanka. Semin. Nephrol. 2019, 39, 278–283. [Google Scholar] [CrossRef]
- Abraham, G.; Agarwal, S.K.; Gowrishankar, S.; Vijayan, M. Chronic Kidney Disease of Unknown Etiology: Hotspots in India and Other Asian Countries. Semin. Nephrol. 2019, 39, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Ramirez, D.; Rana-Custodio, A.; Villa, A.; Rubilar, X.; Olvera, N.; Escobar, A.; Johnson, R.J.; Sanchez-Lozada, L.; Obrador, G.T.; Madero, M. Decreased kidney function and agricultural work: A cross-sectional study in middle-aged adults from Tierra Blanca, Mexico. Nephrol. Dial. Transplant. 2021, 36, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Hansson, E.; Glaser, J.; Weiss, I.; Ekstrom, U.; Apelqvist, J.; Hogstedt, C.; Peraza, S.; Lucas, R.; Jakobsson, K.; Wesseling, C.; et al. Workload and cross-harvest kidney injury in a Nicaraguan sugarcane worker cohort. Occup. Environ. Med. 2019, 76, 818–826. [Google Scholar] [CrossRef]
- Keogh, S.A.; Leibler, J.H.; Decker, C.S.M.; Velazquez, J.J.A.; Jarquin, E.R.; Lopez-Pilarte, D.; Garcia-Trabanino, R.; Delgado, I.S.; Petropoulos, Z.E.; Friedman, D.J.; et al. High prevalence of chronic kidney disease of unknown etiology among workers in the Mesoamerican Nephropathy Occupational Study. BMC Nephrol. 2022, 23, 238. [Google Scholar] [CrossRef]
- Petropoulos, Z.E.; Keogh, S.A.; Jarquin, E.; Lopez-Pilarte, D.; Velazquez, J.J.A.; Garcia-Trabanino, R.; Sanchez, M.R.A.; Guevara, R.; Gruener, A.; Allen, D.R.; et al. Heat stress and heat strain among outdoor workers in El Salvador and Nicaragua. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, J.W.; Adgate, J.L.; Reynolds, S.J.; Butler-Dawson, J.; Krisher, L.; Dally, M.; Johnson, R.J.; James, K.A.; Jaramillo, D.; Newman, L.S. A Pilot Study to Assess Inhalation Exposures among Sugarcane Workers in Guatemala: Implications for Chronic Kidney Disease of Unknown Origin. Int. J. Environ. Res. Public Health 2020, 17, 5708. [Google Scholar] [CrossRef] [PubMed]
- Pope, D.; Diaz, E.; Smith-Sivertsen, T.; Lie, R.T.; Bakke, P.; Balmes, J.R.; Smith, K.R.; Bruce, N.G. Exposure to Household Air Pollution from Wood Combustion and Association with Respiratory Symptoms and Lung Function in Nonsmoking Women: Results from the RESPIRE Trial, Guatemala. Environ. Health Perspect. 2015, 123, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Leaderer, B.P.; Smith, K.R. Particulate matter and carbon monoxide in highland Guatemala: Indoor and outdoor levels from traditional and improved wood stoves and gas stoves. Indoor Air-Int. J. Indoor Air Qual. Clim. 2000, 10, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Engle, P.L.; Hurtado, E.; Ruel, M. Smoke Exposure of Women and Young Children in Highland Guatemala: Prediction and Recall Accuracy. Hum. Organ. 1997, 56, 408–417. [Google Scholar] [CrossRef]
- Pillarisetti, A.; Carter, E.; Rajkumar, S.; Young, B.N.; Benka-Coker, M.L.; Peel, J.L.; Johnson, M.; Clark, M.L. Measuring personal exposure to fine particulate matter (PM2.5) among rural Honduran women: A field evaluation of the Ultrasonic Personal Aerosol Sampler (UPAS). Environ. Int. 2019, 123, 50–53. [Google Scholar] [CrossRef]
- Bruce, N.; McCracken, J.; Albalak, R.; Schei, M.A.; Smith, K.R.; Lopez, V.; West, C. Impact of improved stoves, house construction and child location on levels of indoor air pollution exposure in young Guatemalan children. J. Expo. Anal. Environ. Epidemiol. 2004, 14 (Suppl. 1), S26–S33. [Google Scholar] [CrossRef]
- McCracken, J.P.; Schwartz, J.; Diaz, A.; Bruce, N.; Smith, K.R. Longitudinal Relationship between Personal CO and Personal PM2.5 among Women Cooking with Woodfired Cookstoves in Guatemala. PLoS ONE 2013, 8, e55670. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; McCracken, J.P.; Weber, M.W.; Hubbard, A.; Jenny, A.; Thompson, L.M.; Balmes, J.; Diaz, A.; Arana, B.; Bruce, N. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): A randomised controlled trial. Lancet 2011, 378, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.A. Particulate Matter (Fine Particle) and Urologic Diseases. Int. Neurourol. J. 2017, 21, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Adgate, J.; Erlandson, G.; Butler-Dawson, J.; Calvimontes, L.; Amézquita, L.; Seidel, J.; Barnoya, J.; Dally, M.; Krisher, L.; Jaramillo, D.; et al. Airborne Particulate Matter Exposure in Male Sugarcane Workers at Risk for Chronic Kidney Disease in Guatemala. Ann. Work. Expo. Health 2024. submitted. [Google Scholar]
- Wang, S.W.; Wu, C.Y.H.; Richardson, M.B.; Zaitchik, B.F.; Gohlke, J.M. Characterization of heat index experienced by individuals residing in urban and rural settings. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Maxim. DS1922L iButton Temperature Loggers with 8KB Data-log Memory. 2018. Available online: https://www.maximintegrated.com/en/products/digital/data-loggers/DS1922L.html (accessed on 12 July 2024).
- Rothfusz, L. The Heat Index “Equation” (or, More than You Ever Wanted to Know about Heat Index); SR 90-23; National Oceanic and Atmospheric Administration NWS, Office of Meteorology: Forth Worth, TX, USA, 1990. [Google Scholar]
- OSHA. Using the Heat Index: A Guide for Employers; U.S. Occupational Safety and Health Administration: Washington, DC, USA, 2019. [Google Scholar]
- ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Appendix B: Particles (Insoluble or Poorly Soluble) Not Otherwise Specified; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2015. [Google Scholar]
- Madden, N.M.; Southard, R.J.; Mitchell, J.R. Soil Water Content and Soil Disaggregation by Disking Affects PM10 Emissions. J. Environ. Qual. 2009, 38, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, R.; Shaheen, A.; Wang, F.; Ge, Q.S.; Wu, R.G.; Lelieveld, J.; Wang, J.; Su, X.K. Fine particulate matter (PM2.5) trends from land surface changes and air pollution policies in China during 1980–2020. J. Environ. Manag. 2023, 326, 116847. [Google Scholar] [CrossRef]
- Johnson, M.; Pillarisetti, A.; Piedrahita, R.; Balakrishnan, K.; Peel, J.L.; Steenland, K.; Underhill, L.J.; Rosa, G.; Kirby, M.A.; Diaz-Artiga, A.; et al. Exposure Contrasts of Pregnant Women during the Household Air Pollution Intervention Network Randomized Controlled Trial. Environ. Health Perspect. 2022, 130, 097005. [Google Scholar] [CrossRef]
- World Health Organization. WHO Air Quality Guidelines Global Update 2005. In Proceedings of the Working Group Meeting, Bonn, Germany, 18–20 October 2005; WHO Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- Young, B.N.; Clark, M.L.; Rajkumar, S.; Benka-Coker, M.L.; Bachand, A.; Brook, R.D.; Nelson, T.L.; Volckens, J.; Reynolds, S.J.; L’Orange, C.; et al. Exposure to household air pollution from biomass cookstoves and blood pressure among women in rural Honduras: A cross-sectional study. Indoor Air 2019, 29, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Cal/OSHA. Worker Protection from Wildfire Smoke. 2023. Available online: https://www.dir.ca.gov/dosh/doshreg/Protection-from-Wildfire-Smoke/Wildfire-smoke-emergency-standard.html (accessed on 10 June 2024).
- Oregon OSHA. Key Requirements: Oregon OSHA’s Permanent Rules for Protection from Wildfire Smoke—Revised May 2024. 2024. Available online: https://osha.oregon.gov/OSHAPubs/factsheets/fs92.pdf (accessed on 6 September 2024).
- Garcia-Trabanino, R.; Jarquin, E.; Wesseling, C.; Johnson, R.J.; Gonzalez-Quiroz, M.; Weiss, I.; Glaser, J.; Vindell, J.J.; Stockfelt, L.; Roncal, C.; et al. Heat stress, dehydration, and kidney function in sugarcane cutters in EI Salvador—A cross-shift study of workers at risk of Mesoamerican nephropathy. Environ. Res. 2015, 142, 746–755. [Google Scholar] [CrossRef]
- OSHA. Section III: Chapter 4. Heat Stress. In OSHA Technical Manual; Occupational Safety and Health Administration: Washington, DC, USA, 2017. [Google Scholar]
- ACGIH. Heat Stress. “Strain: TLV® Physical Agents”; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2009. [Google Scholar]
- Sorensen, C.J.; Krisher, L.; Butler-Dawson, J.; Dally, M.; Dexter, L.; Asensio, C.; Cruz, A.; Newman, L.S. Workplace Screening Identifies Clinically Significant and Potentially Reversible Kidney Injury in Heat-Exposed Sugarcane Workers. Int. J. Environ. Res. Public Health 2020, 17, 8552. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.J.; Johnstone, A.F.M.; Aydin, C. Thermal Stress and Toxicity. Compr. Physiol. 2014, 4, 995–1016. [Google Scholar] [CrossRef] [PubMed]
- Leon, L.R. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure. Toxicol. Appl. Pharmacol. 2008, 233, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Pourvakhshoori, N.; Poursadeghiyan, M.; Khankeh, H.R.; Harouni, G.G.; Farrokhi, M. The simultaneous effects of thermal stress and air pollution on body temperature of Tehran traffic officers. J. Environ. Health Sci. Eng. 2020, 18, 279–284. [Google Scholar] [CrossRef]
Overall | Harvest 2021–2022 | Harvest 2022–2023 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | December | February | March | December | February | April | ||||||||||||
Day Type | Work | Off-Work * | Comm | Work | Off-Work | Work ** | Off-Work | Work ** | Off-Work | Work | Off-Work | Comm | Work | Off-Work | Comm | Work | Off-Work | Comm |
Valid samples A | 51 | 62 | 58 | 0 | 13 | 13 B | 13 | 9 C | 7 | 9 D | 8 | 24 | 10 D | 10 | 19 | 10 D | 11 | 15 |
Sample duration, minutes, mean (SD) | 233 (23) | 437 (59) | 372 (31) | N/A | 468 (19) | 240 (0) | 480 (0) | 199 (41) | 538 (9) | 240 (0) | 360 (6) | 347 (18) | 240 (0) | 395 (9.5) | 406 (21) | 240 (0) | 382 (13) | 369 (14) |
Minimum | 24.5 | 4.5 | 19.5 | N/A | 59.7 | 163.1 | 44.8 | 64.1 | 59.4 | 52.9 | 65.1 | 22.19 | 24.5 | 20.5 | 19.5 | 66.8 | 4.5 | 37.4 |
P25 | 124.4 | 73.6 | 61.6 | N/A | 70.0 | 796.3 | 77.3 | 167 | 62.7 | 106.8 | 79.9 | 48.8 | 387.8 | 52.6 | 70.8 | 96 | 78.6 | 71.8 |
Median | 271.7 | 95.8 | 83.5 | N/A | 97.4 | 1167 | 105.0 | 249.4 | 103.3 | 137.0 | 90.5 | 65.9 | 526.2 | 80.3 | 102.1 | 110.3 | 90.2 | 79.7 |
P75 | 652.0 | 141.1 | 119.4 | N/A | 136.2 | 1724 | 170.8 | 362.3 | 149.9 | 252.2 | 143.1 | 96.0 | 646.9 | 110.4 | 134.6 | 131.7 | 135.7 | 119.4 |
Maximum | 2492 | 396.3 | 576.4 | N/A | 211.0 | 2492 | 396.3 | 426.8 | 286.1 | 281.8 | 156.2 | 576.4 | 857.0 | 178.9 | 226.4 | 154.2 | 250.1 | 221.9 |
December 2021 | February 2022 | March 2022 | December 2022 | February 2023 | April 2023 | |
---|---|---|---|---|---|---|
Ambient PM A, μg/m3 | ||||||
PM5 | 89.4 | 116.4 | 153.4 | 63.6 | 84.1 | 195.3 |
Duration, min | 491 | 571 | 428 | 204 | 402 | 444 |
DustTrak, μg/m3, mean (min–max) | ||||||
PM4 | 102 (16–2430) | 106 (19–1770) | 158 (41–4060) | 55 (9–4490) | 168 (27–2700) | 95 (47–1170) |
Field Weather Indices, mean (standard deviation) | ||||||
Temperature, °C | 33.0 (2.5) | 31.7 (2.1) | 28.4 (2.8) | 29.7 (1.9) | N/A | 33.7 (1.9) |
Relative Humidity, % | 52.1 (7.0) | 51.5 (7.3) | 75.3 (19.9) | 65.8 (7.25) | N/A | 45.0 (8.1) |
Overall | Harvest 2021–2022 | Harvest 2022–2023 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | December | February | March | December | February | April | ||||||||||||
Day Type | Work | Off-Work A | Comm | Work | Off-Work | Work | Off-Work | Work | Off-Work | Work | Off-Work | Comm | Work | Off-Work | Comm | Work | Off-Work | Comm |
N | 65 | 62 | 57 | 14 | 13 | 13 | 13 | 9 | 7 | 9 | 8 | 24 | 10 | 10 | 19 | 10 | 11 | 15 |
Average Humidity, % | 58.4 (9.9) * | 54.9 (6.6) | 61.8 (7.4) | 60.2 (7.7) | 54.0 (4.8) | 45.7 (2.9) | 47.2 (3.4) | 67.5 (6.2) | 55.8 (4.1) | 63.7 (4.4) | 63.4 (2.9) | 65.1 (7.1) | 59.5 (9.3) | 54.9 (5.7) | 54.8 (4.3) | 58.1 (10.2) | 58.1 (5.7) | 65.1 (4.5) |
Maximum Humidity, % | 82.4 (10.6) * | 74.2 (10.6) | 78.9 (7.7) | 87.2 (8.4) | 74.2 (5.7) | 68.6 (7.3) | 60.3 (10.6) | 94.5 (2.9) | 75.3 (5.5) | 86.4 (5.2) | 85.0 (1.6) | 80.2 (9.0) | 79.4 (8.1) | 79.9 (9.4) | 75.9 (6.6) | 82.1 (6.6) | 77.1 (5.2) | 80.6 (5.6) |
Average Temperature, °C | 33.0 (1.6) * | 32.6 (1.5) | 32.2 (0.9) | 33.8 (1.1) | 32.6 (0.7) | 33.8 (0.9) | 33.5 (0.8) | 30.8 (0.5) | 31.4 (1.0) | 32.1 (0.7) | 30.1 (1.3) | 32.0 (0.6) | 32.2 (1.3) | 33.1 (1.0) | 32.6 (1.0) | 35.3 (0.6) | 33.5 (0.9) | 32.1 (0.9) |
Maximum Temperature, °C | 39.4 (3.1) * | 36.5 (1.6) | 36.6 (2.9) | 43.3 (3.0) | 36.8 (1.7) | 37.9 (1.4) | 37.1 (1.3) | 36.4 (1.7) | 36.7 (2.6) | 38.7 (3.2) | 34.7 (0.9) | 36.1 (2.0) | 38.7 (1.6) | 36.5 (0.8) | 37.7 (4.3) | 39.6 (0.9) | 36.7 (1.4) | 36.0 (1.2) |
Average Heat Index, °C | 39.5 (4.2) * | 37.2 (3.4) | 38.6 (3.1) | 41.9 (3.4) | 36.8 (2.4) | 36.6 (1.2) | 36.6 (1.1) | 36.2 (1.3) | 35.2 (1.5) | 51.4 (9.1) | 33.9 (2.8) | 39.3 (3.6) | 38 (3.3) | 38.4 (2.5) | 37.2 (2.2) | 45.3(4.2) | 41.1 (4.5) | 39.2 (2.6) |
Maximum Heat Index, °C | 53.7 (11.2) * | 47.8 (7.4) | 51.6 (7.7) | 63.2 (14.8) | 45.3 (5.3) | 42.0 (2.2) | 43.5 (3.3) | 50.2 (6.5) | 44.4 (5.0) | 54.9 (8.3) | 44.6 (6.1) | 53.7 (8.9) | 53.4 (6.6) | 54.5 (4.6) | 50.2 (7.7) | 58.0 (7.2) | 54.3 (9.5) | 49.9 (4.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler-Dawson, J.; Erlandson, G.; Jaramillo, D.; Calvimontes, L.; Pilloni, D.; Seidel, J.; Castro, C.; Villarreal Hernandez, K.; Krisher, L.; Brindley, S.; et al. Concurrent Particulate Matter and Heat Exposure in Working and Non-Working Women in Rural Guatemala. Atmosphere 2024, 15, 1175. https://doi.org/10.3390/atmos15101175
Butler-Dawson J, Erlandson G, Jaramillo D, Calvimontes L, Pilloni D, Seidel J, Castro C, Villarreal Hernandez K, Krisher L, Brindley S, et al. Concurrent Particulate Matter and Heat Exposure in Working and Non-Working Women in Rural Guatemala. Atmosphere. 2024; 15(10):1175. https://doi.org/10.3390/atmos15101175
Chicago/Turabian StyleButler-Dawson, Jaime, Grant Erlandson, Diana Jaramillo, Laura Calvimontes, Daniel Pilloni, James Seidel, Colton Castro, Karely Villarreal Hernandez, Lyndsay Krisher, Stephen Brindley, and et al. 2024. "Concurrent Particulate Matter and Heat Exposure in Working and Non-Working Women in Rural Guatemala" Atmosphere 15, no. 10: 1175. https://doi.org/10.3390/atmos15101175
APA StyleButler-Dawson, J., Erlandson, G., Jaramillo, D., Calvimontes, L., Pilloni, D., Seidel, J., Castro, C., Villarreal Hernandez, K., Krisher, L., Brindley, S., Dally, M., Cruz, A., James, K. A., Newman, L. S., Schaeffer, J. W., & Adgate, J. L. (2024). Concurrent Particulate Matter and Heat Exposure in Working and Non-Working Women in Rural Guatemala. Atmosphere, 15(10), 1175. https://doi.org/10.3390/atmos15101175