Climate Change Mitigation Perspectives from Sub-Saharan Africa: The Technical Pathways to Deep Decarbonization at the City Level
Abstract
:1. Introduction
2. Technical Pathways to Deep Decarbonization at the City Level
3. Materials and Methods
3.1. Research Design
3.2. Case Selection and Case Cities
3.3. Data Collection Framework
4. Results and Analysis
5. Discussion
5.1. Electricity
5.2. Building and Building Services
5.3. Industry
5.4. Transportation Mode and Fuel Shifting
5.5. Waste
5.6. AFOLU
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernstein, S.; Hoffmann, M. The politics of decarbonization and the catalytic impact of subnational climate experiments. Pol. Sci. 2018, 51, 189–211. [Google Scholar] [CrossRef] [PubMed]
- Betsill, M.M.; Bulkeley, H. Cities and the multilevel governance of global climate change. Glob. Gov. 2006, 12, 141–159. [Google Scholar] [CrossRef]
- Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxford Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Ahman, M.; Nilsson, L.J.; Johansson, B. Global climate policy and deep decarbonization of energy-intensive industries. Clim. Policy 2017, 17, 634–649. [Google Scholar] [CrossRef]
- Bataille, C.; Waisman, H.; Briand, Y.; Svensson, J.; Vogt-Schilb, A.; Jaramillo, M.; Delgado, R.; Arguello, R.; Clarke, L.; Wild, T.; et al. Net-zero deep decarbonization pathways in Latin America: Challenges and opportunities. Energy Strateg. Rev. 2020, 30, 100510. [Google Scholar] [CrossRef]
- Bulkeley, H.; Betsill, M.M. Rethinking sustainable cities: Multilevel governance and the “urban” politics of climate change. Env. Polit. 2005, 14, 42–63. [Google Scholar] [CrossRef]
- Currie, P.K. A Resource Flow Typology of African Cities. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2015. [Google Scholar]
- Linton, S.; Clarke, A.; Tozer, L. Technical pathways to deep decarbonization in cities: Eight best practice case studies of transformational climate mitigation. Energy Res. Soc. Sci. 2022, 86, 102422. [Google Scholar] [CrossRef]
- Eang, M.L. The Perspectives and Roles of Multinational Enterprises in Local Sustainable Development. 2019. Available online: https://uwspace.uwaterloo.ca/handle/10012/14956 (accessed on 29 May 2021).
- Calderon, C.; Cantu, C.; Chuhan-Pole, P. Infrastructure Development in Sub-Saharan Africa: A Scorecard; World Bank Policy Research Working Paper No. 8425; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Pinkovskiy, M.; Sala-i-Martin, X. Africa is on time. J. Econ. Growth 2014, 19, 311–338. [Google Scholar] [CrossRef]
- Taylor, I. Is Africa rising? Brown J. World Aff. 2014, 21, 143–162. [Google Scholar]
- Adepoju, A. Issues and recent trends in international migration in Sub-Saharan Africa. Int. Soc. Sci. J. 2000, 52, 383–394. [Google Scholar] [CrossRef]
- Apollo, A.; Mbah, M.F. Challenges and opportunities for climate change education (Cce) in East Africa: A critical review. Climate 2021, 9, 93. [Google Scholar] [CrossRef]
- Cunningham, M.A.; Wright, N.S.; Mort Ranta, P.B.; Benton, H.K.; Ragy, H.G.; Edington, C.J.; Kellner, C.A. Mapping vulnerability of cotton to climate change in west Africa: Challenges for sustainable development. Climate 2021, 9, 68. [Google Scholar] [CrossRef]
- Cudjoe, G.P.; Antwi-Agyei, P.; Gyampoh, B.A. The effect of climate variability on maize production in the ejura-sekyedumase municipality, Ghana. Climate 2021, 9, 145. [Google Scholar] [CrossRef]
- Elijah, V.T.; Odiyo, J.O. Perception of environmental spillovers across scale in climate change adaptation planning: The case of small-scale farmers’ irrigation strategies, Kenya. Climate 2020, 8, 3. [Google Scholar] [CrossRef]
- Bossa, A.Y.; Hounkpè, J.; Yira, Y.; Serpantié, G.; Lidon, B.; Fusillier, J.L.; Sintondji, L.O.; Tondoh, J.E.; Diekkrüger, B. Managing new risks of and opportunities for the agricultural development of West-African Floodplains: Hydroclimatic conditions and implications for rice production. Climate 2020, 8, 11. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Ardö, J. Climate change and the future heat stress challenges among smallholder farmers in East Africa. Atmosphere 2020, 11, 753. [Google Scholar] [CrossRef]
- Li, X.; Gallagher, K.P. Assessing the climate change exposure of foreign direct investment. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef]
- Baarsch, F.; Granadillos, J.R.; Hare, W.; Knaus, M.; Krapp, M.; Schaeffer, M.; Lotze-Campen, H. The impact of climate change on incomes and convergence in Africa. World Dev. 2020, 126, 104699. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Gilli, M.; Calcaterra, M.; Emmerling, J.; Granella, F. Climate change impacts on the within-country income distributions. J. Environ. Econ. Manag. 2024, 127, 103012. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts of climate change on drought patterns over East Africa. Earth’s Futur. 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Somorin, O.A. Climate impacts, forest-dependent rural livelihoods and adaptation strategies in Africa: A review. African J. Environ. Sci. Technol. 2010, 4, 903–912. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Echendu, A.J. Flooding, Food Security and the Sustainable Development Goals in Nigeria: An Assemblage and Systems Thinking Approach. Soc. Sci. 2022, 11, 59. [Google Scholar] [CrossRef]
- Uller, C.M. African Lessons on Climate Change Risks for Agriculture. 2013. Available online: http://nutr.annualreviews.org (accessed on 25 December 2021).
- Connolly-Boutin, L.; Smit, B. Climate change, food security, and livelihoods in sub-Saharan Africa. Reg. Environ. Chang. 2016, 16, 385–399. [Google Scholar] [CrossRef]
- Gebre, G.G.; Rahut, D.B. Prevalence of household food insecurity in East Africa: Linking food access with climate vulnerability. Clim. Risk Manag. 2021, 33, 100333. [Google Scholar] [CrossRef]
- Abioja, M.O.; Abiona, J.A. Impacts of climate change to poultry production in Africa: Adaptation options for broiler chickens. In African Handbook of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 275–296. [Google Scholar]
- Pelletier, J.; Paquette, A.; Mbindo, K.; Zimba, N.; Siampale, A.; Chendauka, B.; Siangulube, F.; Roberts, J.W. Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environ. Res. Lett. 2018, 13, 094017. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 1–25. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Kilungu, H.; Hambira, W.L.; El-Masry, E.A.; Chikodzi, D.; Chapungu, L.; Molua, E.L. Tourism and climate change in Africa: Informing sector responses. J. Sustain. Tour. 2023, 32, 1811–1831. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Adegoke, J.; Abatan, A.A.; Ibe, C.A.; Egbebiyi, T.S.; Engelbrecht, F.; Pinto, I. Potential impacts of climate change on extreme precipitation over four African coastal cities. Clim. Chang. 2001, 143, 399–413. Available online: http://www.fractal.org.za/ (accessed on 22 November 2021). [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Tidman, R.; Abela-Ridder, B.; de Castañeda, R.R. The impact of climate change on neglected tropical diseases: A systematic review. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Mordecai, E.A.; Ryan, S.J.; Caldwell, J.M.; Shah, M.M.; LaBeaud, A.D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Heal. 2020, 4, e416–e423. [Google Scholar] [CrossRef]
- Hendrix, C.S.; Glaser, S.M. Trends and triggers: Climate, climate change and civil conflict in Sub-Saharan Africa. Polit. Geogr. 2007, 26, 695–715. [Google Scholar] [CrossRef]
- Dada, J.T.; Akinlo, T. Foreign direct investment and poverty reduction in sub-Saharan Africa: Does environmental degradation matter? Futur. Bus. J. 2021, 7, 21. [Google Scholar] [CrossRef]
- Fagbemi, F.; Oke, D.F. Climate change vulnerability-foreign direct investment linkage: Why climate change preparedness matters in Sub-Saharan Africa. Res. Econ. 2024, 78, 52–60. [Google Scholar] [CrossRef]
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, 9–10. [Google Scholar] [CrossRef]
- Kling, G.; Volz, U.; Murinde, V.; Ayas, S. The impact of climate vulnerability on firms’ cost of capital and access to finance. World Dev. 2021, 137, 105131. [Google Scholar] [CrossRef]
- Atwoli, L.; Muhia, J.; Merali, Z. Mental health and climate change in Africa. BJPsych Int. 2022, 19, 86–89. [Google Scholar] [CrossRef]
- Gallagher, C.L.; Holloway, T. Integrating Air Quality and Public Health Benefits in U.S. Decarbonization Strategies. Front. Public Health 2020, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bilal, A.; Känzig, D.R. The Macroeconomic Impact of Climate Change: Global vs. Local Temperature; National Bureau of Economic Research: Cambridge, MA, USA, 2024. [Google Scholar]
- Kinda, S.R.; Badolo, F. Does rainfall variability matter for food security in developing countries? Cogent Econ. Financ. 2019, 7, 1640098. [Google Scholar] [CrossRef]
- Moore, F.C. Learning, Catastrophic Risk, and Ambiguity in the Climate Change Era; NBER Chapters: Cambridge, MA, USA, 2024. [Google Scholar]
- Feor, L.; Murray, D.; Folger-Laronde, Z.; Clarke, A. Municipal Sustainability and Climate Planning: A Study of 38 Canadian Local Governments’ Plans and Reports. Environments 2023, 10, 203. [Google Scholar] [CrossRef]
- Gillard, R.; Gouldson, A.; Paavola, J.; Van Alstine, J. Transformational responses to climate change: Beyond a systems perspective of social change in mitigation and adaptation. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 251–265. [Google Scholar] [CrossRef]
- Haxeltine, A.; Avelino, F.; Wittmayer, J.; Kemp, R.; Weaver, P.; Backhaus, J.; O’Riordan, T. Transformative social innovation: A sustainability transitions perspective on social innovation. In Social Frontiers: The Next Edge of Social Innovation Research; Social Frontiers: London, UK, 2013. [Google Scholar]
- Linton, S.; Clarke, A.; Tozer, L. Strategies and governance for implementing deep decarbonization plans at the local level. Sustainability 2020, 13, 154. [Google Scholar] [CrossRef]
- Barrett, B.F.D.; Horne, R.; Fien, J. The Ethical City: A Rationale for an Urgent New Urban Agenda. Sustainability 2016, 8, 1197. [Google Scholar] [CrossRef]
- Faiyetole, A.A. Outside-in perspectives on the socio-econo-technological effects of climate change in Africa. Int. Sociol. 2019, 34, 762–785. [Google Scholar] [CrossRef]
- Hogarth, J.R.; Haywood, C.; Whitley, S. Low-Carbon Development in Sub-Saharan Africa; Overseas Development Institute: London, UK, 2015; Volume 10. [Google Scholar] [CrossRef]
- Güneralp, B.; Zhou, Y.; Ürge-Vorsatz, D.; Gupta, M.; Yu, S.; Patel, P.L.; Fragkias, M.; Li, X.; Seto, K.C. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl. Acad. Sci. USA 2017, 114, 8945–8950. [Google Scholar] [CrossRef]
- Eang, M.; Clarke, A.; Ordonez-Ponce, E. The roles of multinational enterprises in implementing the United Nations Sustainable Development Goals at the local level. BRQ Bus. Res. Q. 2022, 26, 79–97. [Google Scholar] [CrossRef]
- Day, R.; Walker, G.; Simcock, N. Conceptualising energy use and energy poverty using a capabilities framework. Energy Policy 2016, 93, 255–264. [Google Scholar] [CrossRef]
- Stadtler, L.; Seitanidi, M.M.; Knight, H.H.; Leigh, J.; Clarke, A.; Le Ber, M.J.; Bogie, J.; Brunese, P.; Hustad, O.; Krasonikolakis, I.; et al. Cross-Sector Partnerships to Address Societal Grand Challenges: Systematizing Differences in Scholarly Analysis. J. Manag. Stud. 2024. [Google Scholar] [CrossRef]
- Leal Filho, W.; Dibbern, T.; Pimenta Dinis, M.A.; Coggo Cristofoletti, E.; Mbah, M.F.; Mishra, A.; Samuel, N.; Apraiz, J.C.; Abubakar, I.R. The added value of partnerships in implementing the UN sustainable development goals. J. Clean. Prod. 2024, 438, 140794. [Google Scholar] [CrossRef]
- Wijaya, A.S. Climate change, global warming and global inequity in developed and developing countries (Analytical Perspective, Issue, Problem and Solution). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014. [Google Scholar]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the urban carbon footprint: An overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- CDP. CDP and ICLEI—Local Governments for Sustainability. 2022. Available online: https://data.cdp.net/Governance/2021-Full-Cities-Dataset/6dea-3rud (accessed on 5 June 2021).
- Mapfumo, P.; Onyango, M.; Honkponou, S.K.; El Mzouri, E.H.; Githeko, A.; Rabeharisoa, L.; Obando, J.; Omolo, N.; Majule, A.; Denton, F.; et al. Pathways to transformational change in the face of climate impacts: An analytical framework. Clim. Dev. 2017, 9, 439–451. [Google Scholar] [CrossRef]
- Liousse, C.; Assamoi, E.; Criqui, P.; Granier, C.; Rosset, R. Explosive growth in African combustion emissions from 2005 to 2030. Environ. Res. Lett. 2014, 9, 035003. [Google Scholar] [CrossRef]
- Altieri, K.; Trollip, H.; Caetano, T.; Hughes, A.; Merven, B.; Winkler, H. Pathways to Deep Decarbonization in South Africa. SDSN—IDDRI. 2015. Available online: http://unsdsn.org/what-we-do/deep-decarbonization-pathways/ (accessed on 3 April 2021).
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Lebling, K.; Ge, M.; Levin, K.; Waite, R.; Friedrich, J.; Elliott, C.; Chan, C.; Ross, K.; Stolle, F.; Harris, N. State of Climate Action—WRI. 2020. Available online: https://files.wri.org/d8/s3fs-public/2021-09/state_climate_action.pdf?VersionId=Rw2ZmL1HWNSg4z4iZGYz.SdTmn59xvlS (accessed on 22 October 2021).
- Karimu, A.; Mensah, J.T. Climate change and electricity consumption in Sub-Saharan Africa: Assessing the dynamic responses to climate variability. OPEC Energy Rev. 2015, 39, 322–345. [Google Scholar] [CrossRef]
- Olubunmi, O.A.; Xia, P.B.; Skitmore, M. Green building incentives: A review. Renew. Sustain. Energy Rev. 2016, 59, 1611–1621. [Google Scholar] [CrossRef]
- Mercader-Moyano, P.; Esquivias, P.M. Decarbonization and circular economy in the sustainable development and renovation of buildings and neighbourhoods. Sustainability 2020, 12, 7914. [Google Scholar] [CrossRef]
- Gross, S. The Challenge of Decarbonizing Heavy Transport. Foreign Policy. Brookings Institution. 2020. Available online: https://lpdd.org/wp-content/uploads/2022/02/FP_20201001_challenge_of_decarbonizing_heavy_transport.pdf (accessed on 2 August 2021).
- Agarana, M.C.; Bishop, S.A.; Agboola, O.O. Minimizing Carbon Emissions from Transportation Projects in Sub-Saharan Africa Cities Using Mathematical Model: A Focus on Lagos, Nigeria. Proc. Manuf. 2017, 7, 596–601. [Google Scholar] [CrossRef]
- Accra Metropolitan Assembly. C40 Cities; Accra Climate Action Plan: Accra, Ghana, 2021. [Google Scholar]
- Nairobi City County. Nairobi City County Climate Action Plan. 2020. Available online: https://cdn.nation.co.ke/downloads/Nairobi-City-Climate-Action-2021.pdf (accessed on 9 March 2022).
- Oberthür, S.; Khandekar, G.; Wyns, T. Global governance for the decarbonization of energy-intensive industries: Great potential underexploited. Earth Syst. Gov. 2021, 8, 100072. [Google Scholar] [CrossRef]
- Clarke, A.; Zhou, Y. Guidebook for Climate Mitigation in Canadian Municipalities: Governance Options for Deep Decarbonization and Reaching Carbon Neutrality; FCM: Waterloo, Canada, 2021. [Google Scholar]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R., III; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. Available online: http://creativecommons.org/licenses/BY/4.0/ (accessed on 23 December 2021). [CrossRef]
- Haregu, T.N.; Ziraba, A.K.; Mberu, B. Integration of Solid Waste Management Policies in Kenya: Analysis of coherence, gaps and overlap. African Popul. Stud. 2016, 30, 2876–2885. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Kulenstierna, J.; Michalopoulou, E.; Höglund- Isaksson, L.; Zhang, Y.; Seltzer, K.; Ru, M.; Castelino, R.; Faluvegi, G.; Naik, V.; et al. Benefits and Costs of Mitigating Methane Emissions. 2021. 173p. Available online: https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions (accessed on 7 January 2022).
- Njoku, P.O.; Odiyo, J.O.; Durowoju, O.S.; Edokpayi, J.N. A Review of Landfill Gas Generation and Utilisation in Africa. Open Environ. Sci. 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Mendez, G.V. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef]
- Couth, R.; Trois, C. Carbon emissions reduction strategies in Africa from improved waste management: A review. Waste Manag. 2010, 30, 2336–2346. [Google Scholar] [CrossRef]
- Idowu, I.A.; Atherton, W.; Hashim, K.; Kot, P.; Alkhaddar, R.; Alo, B.I.; Shaw, A. An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. Waste Manag. 2019, 87, 761–771. [Google Scholar] [CrossRef]
- AfDB. AfDB Blog. Drivers of Greenhouse Gas Emissions in Africa: Focus on Agriculture, Forestry and Other Land Use. 2020. Available online: https://blogs.afdb.org/climate-change-africa/drivers-greenhouse-gas-emissions-africa-focus-agriculture-forestry-and-other (accessed on 28 April 2021).
- Grau, R.H.; Aide, M. Globalization and Land-Use Transitions in Latin America. Ecol. Soc. 2019, 13, 12. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Climate 2022, 10, 164. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014 Mitigation of Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Eds.; Cambridge Univeristy Press: Cambridge, UK, 2014; pp. 811–922. Available online: https://www.ipcc.ch/report/ar5/wg3/agriculture-forestry-and-other-land-use-afolu/ (accessed on 22 August 2021).
- Ogle, S.M.; Olander, L.; Wollenberg, L.; Rosenstock, T.; Tubiello, F.; Paustian, K.; Buendia, L.; Nihart, A.; Smith, P. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: Providing the basis for action. Glob. Chang. Biol. 2014, 20, 1–6. Available online: http://unfccc.int/national_reports/items/1408.php (accessed on 18 August 2021). [CrossRef] [PubMed]
- Dioha, M.O.; Kumar, A. Exploring sustainable energy transitions in sub-Saharan Africa residential sector: The case of Nigeria. Renew. Sustain. Energy Rev. 2020, 117, 109510. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Musah-Surugu, I.J.; Bawole, J.N.; Ahenkan, A. The “Third Sector” and Climate Change Adaptation Governance in Sub-Saharan Africa: Experience from Ghana. Voluntas 2019, 30, 312–326. [Google Scholar] [CrossRef]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef]
- Broto, V.C. Energy landscapes and urban trajectories towards sustainability. Energy Policy 2017, 108, 755–764. [Google Scholar] [CrossRef]
- Dahiru, D.; Abdulazeez, A.D.; Abubakar, M. An evaluation of the adequacy of the national building code for achieving a sustainable built environment in Nigeria. Res. J. Environ. Earth Sci. 2012, 4, 857–865. [Google Scholar]
- Wahab, S. The Role of Social Capital in Community-Based Urban Solid Waste Management: Case Studies From Ibadan Metropolis, Nigeria. Master’s Thesis, Univeristy of Waterloo, Waterloo, Canada, 2012. [Google Scholar]
- Creswell, J.W.; Poth, C.N. Qualitative Inquiry & Research Design: Choosing Among Five Approaches, 4th ed.; Sage Publications Inc.: New York, NY, USA, 2018. [Google Scholar]
- Tomaszewski, L.E.; Zarestky, J.; Gonzalez, E. Planning Qualitative Research: Design and Decision Making for New Researchers. Int. J. Qual. Methods 2020, 19, 1–7. [Google Scholar] [CrossRef]
- Williams, A. What is a city? Archit. Des. 2012, 82, 66–69. [Google Scholar] [CrossRef]
- Haji, S.; Assefa, T. Addis Ababa City 2016 Greenhouse Gas Emissions Inventory Report. Addis Ababa. 2016. Available online: https://epa.gov.et/images/PDF/Climatechange/2016_Addis_Ababa_GHG_Emssion_Report.pdf (accessed on 16 October 2021).
- Ministry of Environment and Water Resources. Lagos Climate Action Plan. Lagos. 2020. Available online: https://cdn.locomotive.works/sites/5ab410c8a2f42204838f797e/content_entry5ab410faa2f42204838f7990/5ad0ab8e74c4837def5d27aa/files/C40_Lagos_Final_CAP.pdf?1626096978 (accessed on 16 October 2021).
- Weldeghebrael, E.H. Addis Ababa: City Scoping Study, Manchester. 2021. Available online: https://www.african-cities.org/wp-content/uploads/2021/12/ACRC_Addis-Ababa_City-Scoping-Study.pdf (accessed on 6 November 2021).
- City of Addis Ababa, Group, C.C.C.L. Addis Ababa Climate Action Plan. Ørsted Website. 2021. Available online: https://orsted.com/en/sustainability/climate-action-plan/our-green-build-out (accessed on 12 November 2021).
- Elias, P.; Omojola, A. The challenges of climate change for Lagos, Nigeria. Curr. Opin. Environ. Sustain. 2015, 13, 74–78. [Google Scholar] [CrossRef]
- Uduku, O.; Lawanson, T.; Ogodo, O. Lagos: City Scoping Study. African-CitiesOrg. 2021. Available online: https://www.african-cities.org/wp-content/uploads/2021/12/ACRC_Lagos_City-Scoping-Study.pdf (accessed on 21 October 2021).
- Sverdlik, A. Nairobi: City Scoping Study; African Cities Research Consortium, The University of Manchester: Manchester, UK, 2021. [Google Scholar]
- Nairobi City County. Nairobi City County Air Quality Action Plan (2019–2023). Nairobi. 2019. Available online: https://www.eci-africa.org/wp-content/uploads/2019/05/Nairobi-Air-Quality-Action-Plan_Final_ECI_31.12.2018.pdf (accessed on 16 October 2021).
- Carbon City Neutral Alliance. Framework for Deep Carbon Reduction Planning. 2014, 134. Available online: http://usdn.org/uploads/cms/documents/cnca-framework-12-16-15.pdf (accessed on 26 February 2021).
- Koranteng, C.; Mahdavi, A. An investigation into the thermal performance of office buildings in Ghana. Energy Build. 2011, 43, 555–563. [Google Scholar] [CrossRef]
- Thambiran, T.; Diab, R.D. Air pollution and climate change co-benefit opportunities in the road transportation sector in Durban, South Africa. Atmos. Environ. 2011, 45, 2683–2689. [Google Scholar] [CrossRef]
- Collett, K.A.; Hirmer, S.A.; Dalkmann, H.; Crozier, C.; Mulugetta, Y.; McCulloch, M.D. Can electric vehicles be good for Sub-Saharan Africa? Energy Strateg. Rev. 2021, 38, 100722. [Google Scholar] [CrossRef]
- Linton, S. Deep Decarbonization in Cities: Pathways, Strategies, Governance Mechanisms and Actors for Transformative Climate Action. Master’s Thesis, University of Warterloo, Waterloo, Canada, 2020. Available online: https://ocul-wtl.primo.exlibrisgroup.com/view/action/uresolver.do?operation=resolveService&package_service_id=7479687640005162&institutionId=5162&customerId=5150&VE=true (accessed on 12 April 2021).
Sectorial Pathways | Contribution to Africa’s GHG [87] | Findings | References |
---|---|---|---|
Agriculture, Forestry, and other land use (AFOLU) | 57% | AFOLU is the central area of focus for deep decarbonization in developing nations. Implementing sustainable agricultural practices like farm management and agroforestry will help reduce GHG emissions from agriculture. Reducing overdependence on forests for energy sources, land restoration, and spatial planning is also crucial for climate change mitigation. There has been a significant focus on reforestation and forest management as a climate change mitigation pathway. | [91,93,96] |
Energy—Electricity | 17.5% | Energy accessibility for over 500 million Africans with energy poverty through renewable sources like hydro, wind and solar and energy efficiency will support the decarbonization of the electricity sector. Decarbonizing electricity involves reducing energy consumption (efficiency) and switching the energy supply to net-zero carbon sources. Socioeconomic factors constrain the penetration of low-carbon electricity sources. | [55,67,71,97] |
Building and building services | 9.4% | The sustainable building sector involves the reduction of emissions related to residential and corporate building construction, operation, and maintenance. Using sustainable materials in the building sector will also aid decarbonization. The sustainability of buildings can be improved through energy conservation and retrofits. | [72,73,98] |
Industry | 4.0% | Collaboration on research and development will aid decarbonization efforts. Transitioning to a low-energy source for industrial processes is crucial for reducing GHG emissions. Most local climate plans do not account for industrial emissions. | [6,79,80] |
Transportation | 8.1% | High GHG emission is recorded from the use of imported secondhand cars. Poor road infrastructure and networks in cities contribute significantly to GHG emissions. Electricity access and socioeconomic limitations are affecting the use of electric vehicles. The development of a non-motorized mode of transportation is critical to decarbonization. | [54,74,75] |
Waste | 4% | Major challenges are the collection, sorting, and segregation of waste. Social reorientation is needed for sustainable waste management and remediating the poor construction of landfills. There is a lack of market for recyclables due to low manufacturing and economy. Cities in SSA are exploring waste-to-gas projects for power generation. | [83,86,99] |
City | Country | Population | Sub-Region | Role |
---|---|---|---|---|
Accra | Ghana | 1,999,810 | West Africa | Capital city and commercial hub |
Addis Ababa | Ethiopia | 3,353,000 | North Africa | Capital city and commercial hub |
Lagos | Nigeria | 20,341,000 | West Africa | Commercial hub |
Nairobi | Kenya | 3,916,000 | East Africa | Capital city and commercial hub |
Case City | Electricity | Building and Building Services | Industry | Transport Mode | Waste | AFOLU | Total Emissions | Emission per Capita |
---|---|---|---|---|---|---|---|---|
Accra, Ghana | Not available | 381,478 | 238,424 | 715,272 | 1,049,066 | Not available | 2,384,240 | 1.2 |
Addis Ababa, Ethiopia | Not available | 1,115,659 | 11,434 | 6,641,237 | 1,946,389 | 141,372 | 9,856,091 | 2.9 |
Lagos, Nigeria | Not available | 8,461,970 | 6,082,041 | 5,288,731 | 6,610,914 | Not available | 26,443,656 | 1.3 |
Nairobi, Kenya | Not available | 1,052,596 | Not Available | 2,097,274 | 1,529,828 | Not available | 4,679,698 | 1.2 |
Accra | Addis Ababa | Lagos | Nairobi |
---|---|---|---|
Accra Climate Action Plan (2020–2025) [76] | Addis Ababa Climate Action Plan (2021–2025) [106] | Lagos Climate Action Plan (2020–2025) [104] | Nairobi Climate Action Plan (2020–2050) [77] |
Accra Resilience Strategy | Addis Ababa Non-motorized Transportation Strategy | Lagos Resilience Strategy | Nairobi Air Quality Action Plan |
Pedestrian Safety Action plan for the Accra Metropolitan Assembly | Addis Ababa Air Quality Management Plan | Lagos State Development Plan (2012–2025) | Nairobi City County Budget Review and Outlook Paper |
Towards a Carbon Neutrality by 2050 | Addis Ababa Scenarios for 2030 Transportation Master plan | Lagos: City Scoping Study | Nairobi City County Youth Policy |
Accra: City Scoping Study | Addis Ababa: City Scoping Study | Lagos Urban Transportation Project Report | Nairobi: City Scoping Study |
Accra Metropolitan Assembly Annual Action plan | Addis Ababa City Structure Plan (2017–2027) | Lagos Non-Motorized Transport Plan | Nairobi County Annual Development Plan (2022/2023) |
CDP data | Addis Ababa Greenhouse Gas Emissions Inventory | CDP Data | Nairobi County Annual Development Plan (2020/2021) |
CDP Data | Nairobi City County Integrated Development Plan (2018–2022) | ||
CDP Data |
Technical Pathway | Accra | Addis Ababa | Lagos | Nairobi |
---|---|---|---|---|
Electricity | No Target | No Target | 49% renewable energy by 2050 | 30% reduction in GHG |
Solar-powered Street lighting program | Development of a large hydropower project | 1GW of installed PV capacity by 2030; Installing renewable energy systems, building scale renewable energy; electricity regulation lobby | Development of energy efficiency standards, solar-powered street lighting program | |
Building & Building services | 50% of buildings are fitted with solar photovoltaic systems | 100% solar water heaters by 2030; 90% of residential buildings to electric stoves by 2050 | 100% electric cook stoves by 2050 | Uptake of efficient cookstoves |
Development of green building rating system; building retrofits | Fixing permitting process for new builds | Permitting process for new builds regulation; government building retrofits | Regulation, awareness; building code | |
Industry | 45% of industrial operators to electric | 95% of industrial energy to electricity by 2050; 60% industrial efficiency increase by 2050 | No Target | No Target |
Industrial energy efficiency guidelines | Large hydropower development | Incentives | Policy; regulation | |
Transportation mode and fuel shifting | 90% of buses will be powered by electricity by 2050, and 40% of trips through Non-Motorized Transportation (NMT) in 2050 | 10% electric transit by 2050 | EV transit, 50% modal shift from motorcycle to bicycle | 600,000 tCOe reduction per year by 2050, Electronic motorcycle assembly |
Infrastructure investment, low-emission policies; user-friendly platform, and network; NMT infrastructure development | Low-emission transit infrastructure investment; NMT infrastructure development | Transit infrastructure investment, water transport development, regulation; NMT infrastructure development | Infrastructure development; regulation; NMT infrastructure development | |
Waste management | 100% eradication of open dumping of organic waste; harnessing of 65% of landfill gas by 2030 | Diversion of 70% organic waste by 2050 | Composting of 50% of organic waste by 2050; 90% waste collection by 2050 | No Target |
Regulation, infrastructure investment | Landfill gas capture; waste management facility investment | Policy, regulation, development of waste management infrastructure; landfill gas capture, waste to energy (WTE) | Landfill gas capture; awareness; engagement; infrastructure development; decentralized WTE systems | |
AFOLU | No Target | No Target | No Target | No Target |
Policy development; restoration of local green spaces | Restoration of local sinks; afforestation and biodiversity enhancement program | Afforestation and tree planting programs | Green space protection; regulation |
Pathways | Empirical | Literature | Comments |
---|---|---|---|
Energy/electricity | Local governments do not have control over the electricity grid. All case cities have plans to leverage renewable energy and energy efficiency for capacity improvement significantly | The transition to low-carbon energy sources, reducing energy demand and electrification of other sectors | Validate |
Buildings and building services | All cases also addressed the need for low-emission building | Retrofit of the existing building, use of energy-efficient appliances, clean cooking, and improvement in building codes | Validate |
Industry | Local governments are implementing climate action in industrial energy usage and waste management | Collaboration on research and development. Transitioning to low-energy sources for industrial processes | Validate |
Transportation mode and fuel shifting | All case cities are developing EV infrastructure and investing in low-energy transit systems. Local governments are implementing behavioral change strategies for transportation mode shift | Poor road infrastructure and networks in cities contribute significantly to GHG emissions. Electricity access and socioeconomic limitations are affecting the use of electric vehicles. The development of a non-motorized mode of transportation is critical to decarbonization | Validate |
Waste management | All cities are improving the waste diversion rate, improving waste service delivery, and developing landfill gas capture and waste-to-energy programs | Waste diversion from landfills is essential for cities to reduce GHG emissions from the sector. Major challenges are the collection, sorting, and segregation of waste. Social reorientation is needed for sustainable waste management | Validate/Extend The use of decentralized waste-to-energy systems (biodigesters) in low-income communities for gas capture and cooking is a unique strategy |
AFOLU | All cities are developing tree planting programs and green space improvement, and carbon sink protection | Local Governments focus on reforestation and forest management. Sequestration and GHG emission reduction from agricultural processes | Validate/Extend Cities do not have any action related to the decarbonization of the agricultural process. AFOLU remains a priority sector for deep decarbonization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akomolafe, B.; Clarke, A.; Ayambire, R. Climate Change Mitigation Perspectives from Sub-Saharan Africa: The Technical Pathways to Deep Decarbonization at the City Level. Atmosphere 2024, 15, 1190. https://doi.org/10.3390/atmos15101190
Akomolafe B, Clarke A, Ayambire R. Climate Change Mitigation Perspectives from Sub-Saharan Africa: The Technical Pathways to Deep Decarbonization at the City Level. Atmosphere. 2024; 15(10):1190. https://doi.org/10.3390/atmos15101190
Chicago/Turabian StyleAkomolafe, Bayode, Amelia Clarke, and Raphael Ayambire. 2024. "Climate Change Mitigation Perspectives from Sub-Saharan Africa: The Technical Pathways to Deep Decarbonization at the City Level" Atmosphere 15, no. 10: 1190. https://doi.org/10.3390/atmos15101190
APA StyleAkomolafe, B., Clarke, A., & Ayambire, R. (2024). Climate Change Mitigation Perspectives from Sub-Saharan Africa: The Technical Pathways to Deep Decarbonization at the City Level. Atmosphere, 15(10), 1190. https://doi.org/10.3390/atmos15101190