Moss Biomonitoring in the Evaluation of Air Pollution in the Tver Region, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Sample Preparation and Analysis
2.4. Data Evaluation
2.5. Pollution Indices
3. Results and Discussion
3.1. Basic Statistics and Comparison with Literature Data
3.2. Factor Analysis
3.3. Environmental Asessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sevik, H.; Cetin, M.; Ozel, H.B.; Ozel, S.; Zeren Cetin, I. Changes in Heavy Metal Accumulation in Some Edible Landscape Plants Depending on Traffic Density. Environ. Monit. Assess. 2020, 192, 78. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Huang, M.; Chen, Q.; Shi, Z. Assessment of Potentially Toxic Element Pollution in Soils and Related Health Risks in 271 Cities across China. Environ. Pollut. 2021, 270, 116196. [Google Scholar] [CrossRef]
- Afonne, O.J.; Ifediba, E.C. Heavy Metals Risks in Plant Foods—Need to Step up Precautionary Measures. Curr. Opin. Toxicol. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Chen, Y.E.; Cui, J.M.; Yang, J.C.; Zhang, Z.W.; Yuan, M.; Song, C.; Yang, H.; Liu, H.M.; Wang, C.Q.; Zhang, H.Y.; et al. Biomonitoring Heavy Metal Contaminations by Moss Visible Parameters. J. Hazard. Mater. 2015, 296, 201–209. [Google Scholar] [CrossRef]
- Giráldez, P.; Crujeiras, R.M.; Fernández, J.Á.; Aboal, J.R. Establishment of Background Pollution Levels and Spatial Analysis of Moss Data on a Regional Scale. Sci. Total Environ. 2022, 839, 156182. [Google Scholar] [CrossRef]
- Gaberšek, M.; Watts, M.J.; Gosar, M. Attic Dust: An Archive of Historical Air Contamination of the Urban Environment and Potential Hazard to Health? J. Hazard. Mater. 2022, 432, 128745. [Google Scholar] [CrossRef]
- De Agostini, A.; Cortis, P.; Cogoni, A. Monitoring of Air Pollution by Moss Bags around an Oil Refinery: A Critical Evaluation over 16 Years. Atmosphere 2020, 11, 272. [Google Scholar] [CrossRef]
- Kapusta, P.; Godzik, B. Temporal and Cross-Regional Variability in the Level of Air Pollution in Poland—A Study Using Moss as a Bioindicator. Atmosphere 2020, 11, 157. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, A.; Arora, S.; Tripathi, A.; Alghanem, S.M.S.; Khan, K.A.; Ghramh, H.A.; Özdemir, A.; Ansari, M.J. Chemical Analysis of Trace Metal Contamination in the Air of Industrial Area of Gajraula (U.P), India. J. King Saud Univ.—Sci. 2020, 32, 1106–1110. [Google Scholar] [CrossRef]
- Szczepaniak, K.; Biziuk, M. Aspects of the Biomonitoring Studies Using Mosses and Lichens as Indicators of Metal Pollution. Environ. Res. 2003, 93, 221–230. [Google Scholar] [CrossRef]
- Ruehling, A.; Tyler, G. Ecological Approach to the Lead Problem. Bot. Not. 1968, 122, 248–342. [Google Scholar]
- Bargagli, R. Moss and Lichen Biomonitoring of Atmospheric Mercury: A Review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef]
- Barandovski, L.; Cekova, M.; Frontasyeva, M.V.; Pavlov, S.S.; Stafilov, T.; Steinnes, E.; Urumov, V. Atmospheric Deposition of Trace Element Pollutants in Macedonia Studied by the Moss Biomonitoring Technique. Environ. Monit. Assess. 2008, 138, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Frontasyeva, M.; Harmens, H.; Uzhinskiy, A.; Chaligava, O. Mosses as Biomonitors of Air Pollution: 2015/2016 Survey on Heavy Metals, Nitrogen and POPs in Europe and Beyond; JINR Publishing Department: Dubna, Russia, 2020; ISBN 9785953005081. [Google Scholar]
- Koroleva, Y.V.; Ananyan, A.C.; Alekseenok, Y.V.; Chernikova, E.A. Nazemnue Vidu Mhov v Monitoringe Atmosfernuh Osagdenii Tyageluh Metallov v Kaliningradskoi Oblasti; FILIN: Moscow, Russia, 2020; pp. 218–225. (In Russian) [Google Scholar]
- Vergel, K.N.; Goryainova, Z.I.; Vihrova, I.V.; Frontasyeva, M.V. Metod Mhov-Biomonitorov i GIS-Technologii v Ocenke Vozdushnukh Zagryaznenii Promushlennumi Predpriyatiyami Tikhvinskogo Raiona Leningradskoi Oblasti. Экoлoгия Урбанизирoванных Территoрий 2014, 2, 92–101. [Google Scholar]
- Dunaev, A.M.; Rumyantsev, I.V.; Agapova, I.B.; Vergel, K.N.; Gundorina, S.F. Physical and Chemical and Biological Monitoring in Central Russia: Investigation of Quality of Atmospheric Air and Soil in Territory of Rodniki Town. ChemChemTech 2018, 61, 96–104. [Google Scholar] [CrossRef]
- Gorelova, S.V.; Babicheva, D.E.; Frontasyeva, M.V.; Vergel, K.N.; Volkova, E.V. Atmospheric Deposition of Trace Elements in Central Russia: Tula Region Case Study. Comparison of Different Moss Species for Biomonitoring. Int. J. Environ. Sci. 2016, 1, 220–229. [Google Scholar]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Gundorina, S. Assessment of Atmospheric Deposition in Central Russia Using Moss Biomonitors, Neutron Activation Analysis and GIS Technologies. J. Radioanal. Nucl. Chem. 2020, 325, 807–816. [Google Scholar] [CrossRef]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Chaligava, O.; Nekhoroshkov, P.; Grozdov, D. Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics 2022, 10, 66. [Google Scholar] [CrossRef]
- Kashulina, G.M. Monitoring Zagryazntniya Pochv Tyazelumi Metallami v Okrestnostyakh Medno-Nickelevogo Predpriyatiya Na Kolskom Poluostrove. Пoчвoведение 2018, 4, 493–505. [Google Scholar]
- Ermakova, E.V.; Frontasyeva, M.V.; Pavlov, S.S.; Povtoreiko, E.A.; Steinnes, E.; Cheremisina, Y.N. Air Pollution Studies in Central Russia (Tver and Yaroslavl Regions) Using the Moss Biomonitoring Technique and Neutron Activation Analysis. J. Atmos. Chem. 2004, 49, 549–561. [Google Scholar] [CrossRef]
- Vergel, K.N.; Frontasyeva, M.V.; Pavlov, S.S.; Povtoreyko, E.A. Air Pollution Studies in Tver Region of Russia Using Moss—Biomonitoring with Nuclear Analytical Methods. In Proceedings of the AIP Conference Proceedings; American Institute of Physics (AIP): College Park, MD, USA, 2007; Volume 958, pp. 240–241. [Google Scholar]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Frontasyeva, M. Assessment of Atmospheric Deposition in Central Russia: Moscow and Tver Regions, Using Moss Biomonitors, Neutron Activation Analysis and GIS Technologies. In Proceedings of the Fifteenth International Conference on Modern Trends in Activation Analysis: Book of Abstract, Mumbai, India, 17–22 November 2019. [Google Scholar]
- Federal Tourist Agency Tver Region. Available online: https://tourism.gov.ru/tourists/regiony/tsentralnyy-fo/tverskaya-oblast/?ysclid=l8u1fb8z0298695390 (accessed on 5 October 2022).
- Government of Tver Region General Information. Available online: https://тверскаяoбласть.рф/ekonomika-regiona/obshchie-svedeniya/ (accessed on 5 October 2022).
- ICP. Vegetation Moss Survey Protocol. Available online: https://icpvegetation.ceh.ac.uk/get-involved/manuals/moss-survey (accessed on 9 November 2022).
- Yushin, N.; Jakhu, R.; Chaligava, O.; Grozdov, D.; Zinicovscaia, I. Natural and Anthropogenic Radionuclides Concentration with Heavy Metals Analysis of the Sediments Collected around Novaya Zemlya. Mar. Pollut. Bull. 2023, 194, 115346. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A.; Elnazer, A.A. Multivariate Statistics and Contamination Factor to Identify Trace Elements Pollution in Soil around Gerga City, Egypt. Bull. Natl. Res. Cent. 2019, 43, 43. [Google Scholar] [CrossRef]
- Fernández, J.A.; Carballeira, A. Evaluation of Contamination, by Different Elements, in Terrestrial Mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [CrossRef]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.-l.; Zhang, D.-X.; Zhou, Y.-K. Assessment of Heavy Metal Pollution and Human Health Risks in Urban Soils around an Electronics Manufacturing Facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Łyszczarz, S.; Błońska, E.; Lasota, J. The Application of the Geo-Accumulation Index and Geostatistical Methods to the Assessment of Forest Soil Contamination with Heavy Metals in the Babia Góra National Park (Poland). Arch. Environ. Prot. 2020, 46, 69–79. [Google Scholar] [CrossRef]
- Loska, K.; Wiechulła, D.; Korus, I. Metal Contamination of Farming Soils Affected by Industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial Distribution, Ecological Risk and Sources of Heavy Metals in Soils from a Typical Economic Development Area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [Google Scholar] [CrossRef]
- Isley, C.F.; Taylor, M.P. Atmospheric Remobilization of Natural and Anthropogenic Contaminants during Wildfires. Environ. Pollut. 2020, 267, 115400. [Google Scholar] [CrossRef]
- President of Russia Federalnui Zakon Ot 22.03.2003 № 34-FZ. Available online: http://www.kremlin.ru/acts/bank/19317 (accessed on 31 October 2023).
- Odigie, K.O.; Khanis, E.; Hibdon, S.A.; Jana, P.; Araneda, A.; Urrutia, R.; Flegal, A.R. Remobilization of Trace Elements by Forest Fire in Patagonia, Chile. Reg. Environ. Chang. 2016, 16, 1089–1096. [Google Scholar] [CrossRef]
- Maeaba, W.; Prasad, S.; Chandra, S. First Assessment of Metals Contamination in Road Dust and Roadside Soil of Suva City, Fiji. Arch. Environ. Contam. Toxicol. 2019, 77, 249–262. [Google Scholar] [CrossRef]
- Konakovskaya GRES. Available online: https://www.el5-energo.ru/en/about-us/konakovskaya-gres/ (accessed on 23 October 2023).
- Celis-Hernandez, O.; Giron-Garcia, M.P.; Ontiveros-Cuadras, J.F.; Canales-Delgadillo, J.C.; Pérez-Ceballos, R.Y.; Ward, R.D.; Acevedo-Gonzales, O.; Armstrong-Altrin, J.S.; Merino-Ibarra, M. Environmental Risk of Trace Elements in Mangrove Ecosystems: An Assessment of Natural vs Oil and Urban Inputs. Sci. Total Environ. 2020, 730, 138643. [Google Scholar] [CrossRef] [PubMed]
- Lazo, P.; Stafilov, T.; Qarri, F.; Allajbeu, S.; Bekteshi, L.; Frontasyeva, M.; Harmens, H. Spatial Distribution and Temporal Trend of Airborne Trace Metal Deposition in Albania Studied by Moss Biomonitoring. Ecol. Indic. 2019, 101, 1007–1017. [Google Scholar] [CrossRef]
- Huremović, J.; Žero, S.; Bubalo, E.; Dacić, M.; Čeliković, A.; Musić, I.; Bašić, M.; Huseinbašić, N.; Džepina, K.; Cepić, M.; et al. Analysis of PM10, Pb, Cd, and Ni Atmospheric Concentrations during Domestic Heating Season in Sarajevo, Bosnia and Herzegovina, from 2010 to 2019. Air Qual. Atmos. Health 2020, 13, 965–976. [Google Scholar] [CrossRef]
- Al-hamadani, H. Influences of Using Fuel Additives on a Performance and Emissions of SI Engine. Tech. Rep. Kansai Univ. 2020, 62, 10632. [Google Scholar]
- Sager, M. Nickel—A Trace Element Hardly Considered. Int. J. Hortic. Agric. Food Sci. 2019, 3, 75–90. [Google Scholar] [CrossRef]
- Saha, D.; Chatterjee, D.; Chakravarty, S.; Roychowdhury, T. Investigation of Environmental-Concern Trace Elements in Coal and Their Combustion Residues from Thermal Power Plants in Eastern India. Nat. Resour. Res. 2019, 28, 1505–1520. [Google Scholar] [CrossRef]
- Firsov, S.A.; Baranova, T.L.; Firsov, S.S. Ekologicheskii Monitoring Bezopasnosti Pochv Po Soderzhaniyu Tyazhelukh Metallov. Агрoхимический вестник 2014, 3, 5–7. (In Russian) [Google Scholar]
- Cui, W.; Meng, Q.; Feng, Q.; Zhou, L.; Cui, Y.; Li, W. Occurrence and Release of Cadmium, Chromium, and Lead from Stone Coal Combustion. Int. J. Coal Sci. Technol. 2019, 6, 586–594. [Google Scholar] [CrossRef]
- Bartoňová, L.; Raclavská, H.; Čech, B.; Kucbel, M. Behavior of Cd during Coal Combustion: An Overview. Processes 2020, 8, 1237. [Google Scholar] [CrossRef]
- Ghose, M.K.; Majee, S.R. Sources of Air Pollution Due to Coal Mining and Their Impacts in Jharia Coalfield. Environ. Int. 2000, 26, 81–85. [Google Scholar] [CrossRef]
- Sager, M. Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Ding, D.; Kong, L.; Jiang, D.; Wei, J.; Cao, S.; Li, X.; Zheng, L.; Deng, S. Source Apportionment and Health Risk Assessment of Chemicals of Concern in Soil, Water and Sediment at a Large Strontium Slag Pile Area. J. Environ. Manag. 2022, 304, 114228. [Google Scholar] [CrossRef]
- Pathak, P.; Gupta, D.K. (Eds.) Strontium Contamination in the Environment; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2020; Volume 88, ISBN 978-3-030-15313-7. [Google Scholar]
Elements | Min | Max | Mean | Median | SD | Q1 | Q3 | CV, % |
---|---|---|---|---|---|---|---|---|
Al | 178 | 898 | 428 | 414 | 118 | 354 | 476 | 27 |
Ba | 4.3 | 93 | 31 | 30 | 15 | 22 | 40 | 48 |
Cd | 0.09 | 0.98 | 0.23 | 0.21 | 0.10 | 0.17 | 0.26 | 43 |
Co | 0.10 | 0.56 | 0.27 | 0.26 | 0.09 | 0.20 | 0.32 | 34 |
Cr | 0.45 | 2.4 | 0.87 | 0.83 | 0.25 | 0.71 | 0.96 | 29 |
Cu | 2.6 | 11 | 4.9 | 4.7 | 1.3 | 3.9 | 5.5 | 27 |
Fe | 180 | 705 | 329 | 308 | 88 | 275 | 364 | 27 |
Mn | 46 | 1137 | 438 | 417 | 224 | 296 | 592 | 51 |
Ni | 0.57 | 5.8 | 1.8 | 1.6 | 0.93 | 1.2 | 2.2 | 51 |
Pb | 1.5 | 7.6 | 2.8 | 2.7 | 0.76 | 2.3 | 3.0 | 28 |
S | 744 | 1721 | 1033 | 1022 | 138 | 947 | 1113 | 13 |
Sr | 5.7 | 74 | 16 | 15 | 6.6 | 12 | 18 | 42 |
V | 0.49 | 2.5 | 1.1 | 1.0 | 0.31 | 0.89 | 1.2 | 28 |
Zn | 23 | 88 | 41 | 38 | 12 | 34 | 45 | 29 |
Hg | 21 | 68 | 37 | 37 | 9 | 30 | 42 | 24 |
Tver Region | Tver Region | Tver Region | Tver Region | Moscow Region | Vladimir Region | Yaroslavl Region | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nr. Samples | 144 (Present Study) | 37 [22] | 74 [23] | 45 [24] | 156 [20] | 73 [19] | 53 [19] | |||||||
Elem. | MD | Range | MD | Range | MD | Range | MD | Range | MD | Range | MD | Range | MD | Range |
Al | 414 | 178–898 | 589 | 123–3090 | 368 | 79–2558 | - | - | 900 | 110–3000 | 650 | 190–2300 | 500 | 330–1700 |
Ba | 30 | 4.3–93 | 23 | 6.0–78 | 20 | 2.2–82 | 35 | 14–112 | 44 | 3.1–113 | 36 | 5.5–93 | 30 | 2.34–218 |
Cd | 0.21 | 0.09–0.98 | 0.22 | 0.03–0.63 | 0.24 | 0.03–1.1 | - | - | 0.24 | 0.08–0.54 | 0.29 | 0.14–0.67 | 0.15 | 0.082–0.43 |
Co | 0.26 | 0.10–0.56 | 0.39 | 0.08–3.51 | 0.23 | 0.05–1.27 | 0.39 | 0.15–1.2 | 0.38 | 0.11–1.07 | 0.38 | 0.18–0.86 | 0.29 | 0.13–0.87 |
Cr | 0.83 | 0.45–2.4 | 0.79 | 0.20–6.3 | 0.96 | 0.21–6.0 | 2.7 | 0.82–19 | 2.63 | 1.01–7.5 | 2.5 | 1.3–7 | 1.8 | 0.39–5.8 |
Cu | 4.7 | 2.6–11 | 5.0 | - | - | - | - | 7.61 | 3.03–43 | 6.1 | 4.3–9.3 | 5.8 | 3.7–10 | |
Fe | 308 | 180–705 | 347 | 68–2055 | 237 | 26–1113 | 674 | 322–2500 | 700 | 250–2300 | 500 | 250–1600 | 400 | 230–1100 |
Hg | 37 | 21–68 | - | - | - | - | - | - | - | - | - | - | - | - |
Mn | 417 | 46–1137 | 239 | 45–1897 | 808 | 114–3540 | 364 | 50–954 | 449 | 0.46–1540 | 431 | 118–931 | 382 | 48–964 |
Ni | 1.6 | 0.57–5.8 | 1.26 | 0.25–4.9 | 0.64 | 0.43–5.3 | 1.6 | 0.52–3.3 | 2.87 | 0.46–6.3 | 2.8 | 1.24–5.7 | 1.83 | 0.8–6.5 |
Pb | 2.7 | 1.5–7.6 | 5.9 | 2.06–9.9 | - | - | - | - | 4.82 | 1.33–14 | 4.2 | 1.9–8.8 | 2.8 | 0.003–0.07 |
S | 1022 | 744–1721 | - | - | - | - | - | - | - | - | - | - | - | - |
Sr | 15 | 5.7–74 | 12 | 5.1–44 | 7.1 | 1.6–29 | 13 | 4.67–29 | - | - | - | - | - | - |
V | 1 | 0.49–2.5 | 1.8 | 0.34–6.0 | 1.1 | 0.08–14 | 2.3 | 1.0–7.3 | 1.9 | 0.32–5.3 | 1.9 | 0.95–6.3 | 1.7 | 0.8–8 |
Zn | 38 | 23–88 | 30 | 19–72 | 26 | 11–122 | 44 | 21–131 | 57 | 1.3–145 | 48 | 32–98 | 34 | 23–169 |
Factor 1 | Factor 2 | Factor 3 | |
---|---|---|---|
Al | 0.85 | −0.07 | 0.24 |
Ba | 0.11 | 0.23 | 0.82 |
Cd | 0.15 | 0.55 | 0.27 |
Co | 0.62 | 0.26 | 0.30 |
Cr | 0.78 | 0.07 | 0.15 |
Cu | 0.59 | 0.20 | −0.18 |
Fe | 0.92 | −0.03 | 0.17 |
Mn | −0.12 | 0.55 | −0.07 |
Ni | 0.18 | 0.63 | 0.08 |
Pb | 0.73 | 0.19 | 0.20 |
S | 0.63 | 0.44 | 0.11 |
Sr | 0.14 | −0.06 | 0.81 |
V | 0.88 | 0.12 | 0.14 |
Zn | 0.20 | 0.78 | −0.08 |
Hg | 0.45 | −0.10 | 0.47 |
Expl.Var | 4.96 | 2.03 | 1.95 |
Prp.Totl | 0.33 | 0.14 | 0.13 |
CF | Igeo | EF | |
---|---|---|---|
Al | 1.32 | −0.23 | RE |
Ba | 0.60 | −1.51 | 0.46 |
Cd | 0.75 | −1.10 | 0.59 |
Co | 1.24 | −0.35 | 0.96 |
Cr | 1.38 | −0.17 | 1.06 |
Cu | 1.42 | −0.12 | 1.13 |
Fe | 1.15 | −0.43 | 0.88 |
Mn | 0.70 | −1.35 | 0.57 |
Ni | 1.00 | −0.74 | 0.80 |
Pb | 0.95 | −0.71 | 0.74 |
S | 1.03 | −0.56 | 0.82 |
Sr | 1.13 | −0.49 | 0.88 |
V | 0.92 | −0.76 | 0.70 |
Zn | 0.73 | −1.08 | 0.59 |
Hg | 0.98 | −0.65 | 0.77 |
PLI | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergel, K.; Zinicovscaia, I.; Yushin, N.; Chaligava, O.; Cepoi, L.; Kravtsova, A. Moss Biomonitoring in the Evaluation of Air Pollution in the Tver Region, Russia. Atmosphere 2024, 15, 1191. https://doi.org/10.3390/atmos15101191
Vergel K, Zinicovscaia I, Yushin N, Chaligava O, Cepoi L, Kravtsova A. Moss Biomonitoring in the Evaluation of Air Pollution in the Tver Region, Russia. Atmosphere. 2024; 15(10):1191. https://doi.org/10.3390/atmos15101191
Chicago/Turabian StyleVergel, Konstantin, Inga Zinicovscaia, Nikita Yushin, Omari Chaligava, Liliana Cepoi, and Alexandra Kravtsova. 2024. "Moss Biomonitoring in the Evaluation of Air Pollution in the Tver Region, Russia" Atmosphere 15, no. 10: 1191. https://doi.org/10.3390/atmos15101191
APA StyleVergel, K., Zinicovscaia, I., Yushin, N., Chaligava, O., Cepoi, L., & Kravtsova, A. (2024). Moss Biomonitoring in the Evaluation of Air Pollution in the Tver Region, Russia. Atmosphere, 15(10), 1191. https://doi.org/10.3390/atmos15101191