The Scale Model Room Approach to Test the Performance of Airtight Membranes to Control Indoor Radon Levels and Radiation Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radon Barrier Materials
2.2. Experimental Configuration
2.3. Experiments
3. Results
4. Discussion
5. Conclusions
- The scale model room approach is a very useful tool to test the performance of waterproof materials. It is a rapid and straightforward method to evaluate the indoor radon reduction in consistent settings and compare different membranes, even during the production and development stages.
- This methodology is useful for guiding manufacturing companies in the production of new membranes and in the choice of specific additives that have proven promising in retaining radon in this screening phase.
- The model room is here proposed as an alternative or in combination with the standard approach based on radon diffusion coefficients which still presents difficulties in measurement by different laboratories.
- It is not intended to reproduce real conditions and situations or evaluate the scale ratios between radon levels and size/volume of the indoor environment, but it is useful for practical applications because it provides indications of best materials.
- This approach is also helpful for evaluating the relative reduction in radiation exposure, i.e., the exposure directly proportional to indoor radon activity concentrations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Sample * | Relative Indoor Radon Change | ||
---|---|---|---|
RIR (%) | |||
Part 2 | Part 3 | Part 4 | |
A1 | 1 | −33 | −64 |
A2 | −37 | −77 | −90 |
A3 | −36 | −76 | −91 |
A4 | −52 | −81 | −89 |
A5 | −62 | −82 | −92 |
A6 | −41 | −74 | −91 |
A7 | −79 | −83 | −93 |
A8 | −81 | −81 | −93 |
A9 | −42 | −85 | −90 |
A10 | −27 | −85 | −94 |
A11 | −18 | −77 | −91 |
A12 | −38 | −82 | −94 |
A13 | −81 | −84 | −93 |
B1 | −38 | −78 | −92 |
B2 | −47 | −90 | −93 |
B3 | −54 | −88 | −94 |
B4 | −65 | −91 | −93 |
B5 | −20 | −72 | −89 |
B6 | −92 | −89 | −97 |
B7 | −90 | −89 | −93 |
B8 | −75 | −93 | −94 |
B9 | −60 | −89 | −92 |
B10 | −94 | −94 | −94 |
B11 | −90 | −87 | −94 |
B12 | −86 | −86 | −93 |
B13 | −54 | −88 | −84 |
B14 | −66 | −80 | −89 |
B15 | −90 | −86 | −91 |
References
- Sethi, T.K.; El-Ghamry, M.N.; Kloecker, G.H. Radon and Lung Cancer. Clin. Adv. Hematol. Oncol. 2012, 10, 157–164. [Google Scholar] [PubMed]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquit, L. Radon and Lung Cancer. Curr. Trends Future Perspect. Cancers 2022, 14, 3142. [Google Scholar]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lunh Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 10, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.C. Sources of Indoor Radon in Houses: A Review. J. Air Pollut. Control Assoc. 1983, 33, 105–109. [Google Scholar] [CrossRef]
- Vogiannis, E.G.; Nikolopoulos, D. Radon sources and associated risk in terms of exposure and dose. Front. Public Health 2014, 2, 207. [Google Scholar] [CrossRef]
- Hensche, D.B. Analysis of Radon Mitigation Techniques Used in Existing US Houses. Radiat. Prot. Dosim. 1994, 56, 21–27. [Google Scholar]
- Steck, D.J. The Effectiveness of Mitigation for Reducing Radon Risk in Single-Family Minnesota Homes. Health Phys. 2012, 103, 241–248. [Google Scholar] [CrossRef]
- Fuente, M.; Rabágo, D.; Goggins, J.; Fuente, I.; Sainz, C.; Foley, M. Radon concentration and pressure field extension monitoring in a pilot house in Spain. Sci. Total Environ. 2019, 695, 133746. [Google Scholar] [CrossRef]
- Khan, S.M.; Gomes, J.; Krewski, D.R. Radon interventions around the globe: A systematic review. Helyion 2019, 5, e011737. [Google Scholar] [CrossRef]
- Baltrocchi, A.P.D.; Maggi, L.; Dal Lago, B.; Torretta, V.; Szabó, M.; Nasirov, M.; Kabilov, E.; Rada, E.C. Mechanisms of Diffusion of Radon in Buildings and Mitigation Techniques. Sustainability 2024, 16, 324. [Google Scholar] [CrossRef]
- Mortazavi, S.M.J.; Jamali, F.; Moradgholi, J.; Mehdizadeh, A.R.; Faghihi, R.; Mehdizadeh, F.; Haghani, M.; Saieedi, M.; Mortazavi, S.A.; Ghanbarpour, M.R. Investigation of the Efficacy of Damp-Proof Montmorillonite Nanoclay for Radon Reduction Strategies in Radon Prone Areas of Ramsar. J. Biomed. Phys. Eng. 2013, 3, 25–28. [Google Scholar]
- Jiránek, M.; Hůlka, J. Applicability of various insulating materials for radon barriers. Sci. Total Environ. 2001, 272, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Portaro, M.; Rocchetti, I.; Tuccimei, P.; Galli, G.; Soligo, M.; Ciotoli, G.; Longoni, C.; Vasquez, D.; Sola, F. Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere 2024, 15, 425. [Google Scholar] [CrossRef]
- Ruvira, B.; García-Fayos, B.; García-Gimeno, B.; Arnal, J.M.; Verdú, G. Study of the use of wallpaper to mitigate radon exhalation from building materials in indoor spaces. Radiat. Phys. Chem. 2024, 223, 111916. [Google Scholar] [CrossRef]
- Jiránek, M.; Hůlka, J. Radon diffusion coefficient in radon-proof membranes—Determination and applicability for the design of radon barriers. Int. J. Archit. Sci. 2000, 1, 149–155. [Google Scholar]
- Jiránek, M.; Kotrbatá, M. Radon diffusion coefficients in 360 waterproof materials of different chemical composition. Radiat. Prot. Dosim. 2011, 145, 178–183. [Google Scholar] [CrossRef]
- Tejado-Ramos, J.-J.; Alvarez-Toral, A.; Guillén, J.; Carmona, M.; Muñoz-Almaraz, F.J. Methodology for assessment of radon diffusion coefficients in membranes, used as radon barriers in construction and refurbishment. Constr. Build. Mater. 2024, 414, 134967. [Google Scholar] [CrossRef]
- ISO/TS 11665–13; Measurement of Radioactivity in the Environment—Air: Radon 222—Part 13: Determination of the Diffusion Coefficient in Waterproof Materials: Membrane Two-Side Activity Concentration Test Method. International Standardization Organization (ISO): Geneva, Switzerland, 2017.
- Portaro, M.; Tuccimei, P.; Galli, G.; Soligo, M.; Longoni, C.; Vasquez, D. Testing the properties of radon barrier materials and home ventilation to reduce indoor radon accumulation. Atmosphere 2023, 14, 15. [Google Scholar] [CrossRef]
- EC (European Council). Directorate-General for Environment. Radiological protection principles concerning the natural radioactivity of building material. Radiat. Prot. 1999, 112, 1–16. [Google Scholar]
- Lucchetti, C.; Castelluccio, M.; Altamore, M.; Briganti, A.; Galli, G.; Soligo, M.; Tuccimei, P.; Voltaggio, M. Using a scale model room to assess the contribution of building material of volcanic origin to indoor radon. Nukleonica 2020, 65, 71–76. [Google Scholar] [CrossRef]
- Lucchetti, C.; Galli, G.; Tuccimei, P. Indoor/outdoor air exchange affects indoor radon. The use of a scale model room to developa mitigation strategy. Adv. Geosci. 2022, 57, 81–88. [Google Scholar] [CrossRef]
- Tuccimei, P.; Moroni, M.; Norcia, D. Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: Influence of particle size, humidity and precursors concentration. Appl. Radiat. Isot. 2006, 64, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Gadd, M.S.; Borak, T.B. In-situ determination of the diffusion coefficient of 222Rn in concrete. Health Phys. 1995, 68, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Rogers, V.C.; Nielson, K.K.; Holt, R.B.; Snoddy, R. Radon diffusion coefficients for residential concretes. Health Phys. 1994, 67, 261–265. [Google Scholar] [CrossRef]
- Rogers, V.C.; Nielson, K.K. Economic Impact Statement for Radon Control Features in New Residential Construction; report RAE-9226/2-5; Rogers & Associates Engineering Corp.: Salt Lake City, UT, USA, 1994. [Google Scholar]
- Chauhan, R.P.; Kumar, A. A Comparative Study of Indoor Radon Contributed by Diffusive and Advective Transport through Intact Concrete. Phys. Procedia 2015, 80, 109–112. [Google Scholar] [CrossRef]
- Gaskin, J.; Li, Y.E.; Ganapathy, G.; Nong, G.; Whyte, J.; Zhou, L.G. Radon infiltration building envelope test system: Evaluation of barrier Materials. Radiat. Prot. Dosim. 2021, 196, 17–25. [Google Scholar] [CrossRef]
- Sainz, C.; Gutiérrez, J.L.; Quindós, L.S.; Fuente, I. Radon Diffusion Coefficient in FOAMGLAS® Cellular Glass Thermal Insulation. Report RAD592_E2. 2016. Available online: https://www.foamglas.com (accessed on 4 July 2024).
- Rasmussen, T.V.; Cornelius, T. Use of radon barriers to reach an acceptable radon level. E3S Web Conf. 2020, 172, 05003. [Google Scholar] [CrossRef]
- Boer, D.G.; Langerak, J.; Pescarmona, P.P. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl. Energy Mater. 2023, 6, 2634–2656. [Google Scholar] [CrossRef]
- Bikit, I.; Mrdja, D.; Bikit, K.; Grujic, S.; Knezevic, D.; Forkapic, S.; Kozmidis-Luburic, U. Radon adsorption by zeolite. Radiat. Meas. 2015, 72, 70–74. [Google Scholar] [CrossRef]
- Heinitz, S.; Mermans, J.; Maertens, D.; Skliarova, H.; Aerts, A.; Cardinaels, T.; Gueibe, C.; Rutten, J.; Ireland, N.; Kuznicki, D.; et al. Adsorption of radon on silver exchanged zeolites at ambient temperatures. Sci. Rep. 2023, 13, 6811. [Google Scholar] [CrossRef]
- Gagliardo, G.; Hanfi, M.Y.; La Verde, G.; Pugliese, M.; Gargiulo, N.; Caputo, D.; Ambrosino, F. Efficacy of zeolites in radon adsorption: State of the art and development of an optimized approach. Isot. Environ. Health Stud. 2024, 60, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Paschalides, J.S.; Marinakis, G.S.; Petropoulos, N. Passive, integrated measurement of radon using 5A synthetic zeolite and blue silica gel. Appl. Radiat. Isot. 2009, 68, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Rovenská, K.N. The effect on the radon diffusion coefficient of long-term exposure of waterproof membranes to various degradation agents. Radiat. Prot. Dosim. 2014, 160, 92–95. [Google Scholar] [CrossRef]
- Rahman, N.M.; Tracy, B.L. Radon control systems in existing and new construction: A review. Radiat. Prot. Dosim. 2009, 135, 243–255. [Google Scholar] [CrossRef]
- Rovenska, K.; Jiranek, M. 1st International comparison measurement on assessing the diffusion coefficient of radon. Radiat. Prot. Dosim. 2011, 145, 127–132. [Google Scholar] [CrossRef]
- Rovenska, K.; Jiranek, M. Radon diffusion coefficient measurement in waterproofings—A review of methods and an analysis of differences in results. Appl. Radiat. Isot. 2012, 70, 802–807. [Google Scholar] [CrossRef]
- Marsh, J.W.; Tomášek, L.; Laurier, D.; Harrison, J.D. Effective dose coefficients for radon and progeny: A review of ICRP and UNSCEAR values. Radiat. Prot. Dosim. 2021, 195, 1–20. [Google Scholar] [CrossRef]
Sample * | Product | Application kg m−2 | Equilibrium 222Rn Bq m−3 | |||
---|---|---|---|---|---|---|
Part 1 | Part 2 | Part 3 | Part 4 | |||
A1 | Plasterboard panel | - | 1203 ± 121 | 1217 ± 93 (1) | 808 ± 144 (−33) | 436 ± 89 (−64) |
A2 | Mapethene HT AP | - | 1217 ± 80 | 765 ± 78 (−37) | 279 ± 79 (−77) | 120 ± 49 (−90) |
A3 | Plastimul 2K Plus | 4.3 | 1301 ± 196 | 830 ± 78 (−36) | 311 ± 83 (−76) | 122 ± 60 (−91) |
A4 | Mapeproof SA | - | 1415 ± 119 | 674 ± 63 (−52) | 271 ± 92 (−81) | 150 ± 64 (−89) |
A5 | Mapeproof AL 1200 AP | - | 1498 ± 113 | 573 ± 105 (−62) | 275 ± 54 (−82) | 116 ± 37 (−92) |
A6 | Plastimul 1K Superplus | 2.3 | 1166 ± 213 | 687 ± 122 (−41) | 301 ± 73 (−74) | 106 ± 48 (−91) |
A7 | Mapelastic Aqua Defense | 1 | 1842 ± 300 | 392 ± 67 (−79) | 308 ± 110 (−83) | 120 ± 57 (−93) |
A8 | Mapegum EPX-1 | 3 | 1464 ± 155 | 273 ± 51 (−81) | 273 ± 105 (−81) | 110 ± 58 (−93) |
A9 | Purtop 1000 | 2.2 | 1443 ± 169 | 841 ± 103 (−42) | 220 ± 83 (−85) | 145 ± 77 (−90) |
A10 | Purtop 611 | 2.2 | 1585 ± 191 | 1165 ± 133 (−27) | 242 ± 76 (−85) | 92 ± 41 (−94) |
A11 | Purtop 200 | 2.5 | 1428 ± 197 | 1170 ± 137 (−18) | 322 ± 105 (−77) | 129 ± 69 (−91) |
A12 | Purtop Easy DW | 2.5 | 2041 ± 173 | 1273 ± 105 (−38) | 362 ± 93 (−82) | 129 ± 51 (−94) |
A13 | Aquaflex S1K | 2.4 | 1920 ± 151 | 364 ± 63 (−81) | 302 ± 90 (−84) | 133 ± 63 (−93) |
B1 | Mapeproof Liquid Membrane | 2.3 | 1378 ± 180 | 858 ± 106 (−38) | 301 ± 88 (−78) | 107 ±44 (−92) |
B2 | Primer SN Rasante | 1.4 | 1264 ± 162 | 666 ± 75 (−47) | 126 ± 55 (−90) | 90 ± 47 (−93) |
B3 | Sopro ZR Turbo MAXX 618 | - | 1449 ± 167 | 662 ± 56 (−54) | 176 ± 66 (−88) | 86 ± 34 (−94) |
B4 | Mapefloor I302 SL | 2 + 1 Q 0.25 | 1324 ± 163 | 463 ± 60 (−65) | 117 ± 51(−91) | 89 ± 52(−93) |
B5 | Ultratop | 34 | 1476 ± 114 | 1188 ± 116 (−20) | 413 ± 96 (−72) | 158 ± 62 (−89) |
B6 | Mapeproof AL AP | - | 1336 ± 168 | 104 ± 31 (−92) | 150 ± 51 (−89) | 41 ± 23 (−97) |
B7 | Mapeproof FBT | - | 1226 ± 73 | 125 ±26 (−90) | 136 ± 58 (−89) | 81 ± 31 (−93) |
B8 | Planiseal CR1 | 2.2 | 1194 ± 99 | 293 ± 38 (−75) | 89 ± 44 (−93) | 73 ± 32 (−94) |
B9 | Purtop Easy | 2.2 | 1266 ± 85 | 501 ± 41 (−60) | 138 ± 56 (−89) | 106 ± 43 (−92) |
B10 | Mapefloor PU 406 | 2.2 | 1239 ± 105 | 70 ± 24 (−94) | 78 ± 33 (−94) | 68 ± 31 (−94) |
B11 | Mapegum WPS | 1.2 | 1601 ± 110 | 161 ± 39 (−90) | 200 ± 75 (−87) | 95 ± 46 (−94) |
B12 | Aquaflex Roof HR | 2 | 1539 ± 225 | 217 ± 43 (−86) | 212 ± 72 (−86) | 113 ± 59 (−93) |
B13 | Mapefloor PU 406, no zeolites | - | 1446 ± 122 | 666 ± 120 (−54) | 177 ± 65 (−88) | 235 ± 130 (−84) |
B14 | Sililate membrane, polymer only | - | 1955 ± 122 | 671 ± 122 (−66) | 382 ± 156 (−80) | 212 ± 130 (−89) |
B15 | Mapesil BM | 5 | 1423 ± 172 | 148 ± 31 (−90) | 196 ± 76 (−86) | 127 ± 49 (−91) |
Class * | Type | Number of Samples | Samples ** | RIR (%, Phase II of the Experiments) |
---|---|---|---|---|
1 | Cement-based mortar | 1 | B5 | −20 |
Self-adhesive bituminous membrane | 1 | A2 | −37 | |
Bituminous emulsions | 2 | A3, A6 | from −36 to −41 | |
Polyurea-based membranes | 3 | A9, A10, A11 | from −18 to −42 | |
2 | Epoxy compounds | 2 | B2, B4 | from −47 to −65 |
Mineral slurry | 1 | B3 | −54 | |
3 | FPO membrane | 1 | B7 | −90 |
Silane-terminated polymer membranes | 3 | B8, B14, A13 | from −66 to −81 | |
Synthetic resin | 4 | B11, B12, A7, A8 | from −79 to −90 | |
Silicon sealant | 1 | B15 | −90 | |
4 | Polyurethanes | 5 | B1, B9, B10, B13, A12 | from −38 to −94 |
HDPE membranes | 3 | B6, A4, A5 | from −52 to −92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portaro, M.; Rocchetti, I.; Tuccimei, P.; Galli, G.; Soligo, M.; Longoni, C.; Vasquez, D. The Scale Model Room Approach to Test the Performance of Airtight Membranes to Control Indoor Radon Levels and Radiation Exposure. Atmosphere 2024, 15, 1260. https://doi.org/10.3390/atmos15101260
Portaro M, Rocchetti I, Tuccimei P, Galli G, Soligo M, Longoni C, Vasquez D. The Scale Model Room Approach to Test the Performance of Airtight Membranes to Control Indoor Radon Levels and Radiation Exposure. Atmosphere. 2024; 15(10):1260. https://doi.org/10.3390/atmos15101260
Chicago/Turabian StylePortaro, Manuela, Ilaria Rocchetti, Paola Tuccimei, Gianfranco Galli, Michele Soligo, Cristina Longoni, and Dino Vasquez. 2024. "The Scale Model Room Approach to Test the Performance of Airtight Membranes to Control Indoor Radon Levels and Radiation Exposure" Atmosphere 15, no. 10: 1260. https://doi.org/10.3390/atmos15101260
APA StylePortaro, M., Rocchetti, I., Tuccimei, P., Galli, G., Soligo, M., Longoni, C., & Vasquez, D. (2024). The Scale Model Room Approach to Test the Performance of Airtight Membranes to Control Indoor Radon Levels and Radiation Exposure. Atmosphere, 15(10), 1260. https://doi.org/10.3390/atmos15101260