Radon Concentration in Air and Evaluation of the Radiation Dose in Villages near Shizhuyuan, Southern Hunan, China
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Sampling Strategy
3.2. Radon Concentration Measurement
3.3. Estimation of Radiation Dose and Lifetime Risk Probability
4. Results and Discussion
4.1. Radon Concentration in Air
4.2. Radiation Dose and Lifetime Risk Probability
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNSCEAR. Sources and Biological Effects of Ionizing Radiation; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Kaur, M.; Kumar, A.; Mehra, R.; Mishra, R. Dose assessment from exposure to radon, thoron and their progeny concentrations in the dwellings of sub-mountainous region of Jammu & Kashmir, India. J. Radioanal. Nucl. Chem. 2017, 35, 75–88. [Google Scholar]
- Vogeltanz-Holm, N.; Schwartz, G.G. Radon and lung cancer: What does the public really know. J. Environ. Radioact. 2018, 192, 26–31. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization Press: Geneva, Switzerland, 2009.
- UNSCEAR; Annex, E. Sources-to-Effects Assessment for Radon in Homes and Workplaces; United Nations: New York, NY, USA, 2008. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Assessment of Risk from Radon in Homes; Environmental Protection Agency: Washington, DC, USA, 2003; Volume 402.
- Alali, A.E.; Al-Shboul, K.F.; Yaseen, Q.B.; Alaroud, A. Assessment of radon concentrations and exposure doses in dwellings surrounding a high capacity gas turbine power station using passive measurements and dispersion modeling. J. Environ. Radioact. 2019, 196, 9–14. [Google Scholar] [CrossRef]
- Dong, L. Investigation and Research on Residential Indoor Radon Levels in Urumqi. Environ. Sci. Manag. 2015, 40, 119–122, (In Chinese with English Abstract). [Google Scholar]
- Dowdall, A.; Murphy, P.; Pollard, D.; Fenton, D. Update of Ireland’s nationalaverage indoor radon concentration—Application of a new survey protocol. J. Environ. Radioact. 2017, 169, 1–8. [Google Scholar] [CrossRef]
- Hansen, V.; Petersen, D.; Søgaard-Hansen, J.; Rigét, F.F.; Mosbech, A.; Clausen, D.S.; Mulvad, G.; Rönnqvist, T. Indoor radon survey in Greenland and dose assessment. J. Environ. Radioact. 2023, 257, 107080. [Google Scholar] [CrossRef] [PubMed]
- Hansen, V.; Sabo, A.; Korn, J.; MacLean, D.; Rigét, F.F.; Clausen, D.S.; Cubley, J. Indoor radon survey in Whitehorse, Canada, and dose assessment. J. Radiol. Prot. 2023, 43, 011515. [Google Scholar] [CrossRef]
- Kashkinbayev, Y.; Kazymbet, P.; Bakhtin, M.; Khazipova, A.; Hoshi, M.; Sakaguchi, A.; Ibrayeva, D. Indoor Radon Survey in Aksu School and Kindergarten Located near Radioactive Waste Storage Facilities and Gold Mines in Northern Kazakhstan (Akmola Region). Atmosphere 2023, 14, 1133. [Google Scholar] [CrossRef]
- Kudo, H.; Tokonami, S.; Omori, Y.; Ishikawa, T.; Iwaoka, K.; Sahoo, S.K.; Akata, N.; Hosoda, M.; Wanabongse, P.; Pornnumpa, C.; et al. Comparative dosimetry for radon and thoron in high background radiation areas in china. Radiat. Protect. Dosim. 2015, 167, 155–159. [Google Scholar] [CrossRef]
- Serge, A.B.M.; Didier, T.S.S.; Samuel, B.G.; Kranrod, C.; Omori, Y.; Hosoda, M.; Saïdou Tokonami, S. Assessment of Radiological Risks due to Indoor Radon, Thoron and Progeny, and Soil Gas Radon in Thorium-Bearing Areas of the Centre and South Regions of Cameroon. Atmosphere 2023, 14, 1708. [Google Scholar] [CrossRef]
- Vukotic, P.; Antovic, N.; Djurovic, A.; Zekic, R.; Svrkota, N.; Andjelic, T.; Svrkota, R.; Mrdak, R.; Bjelica, N.; Djurovic, T.; et al. Radon survey in Montenegro—A base to set national radon reference and “urgent action” level. J. Environ. Radioact. 2019, 196, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Günay, O.; Aközcan, S.; Kulalı, F. Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul. Arab. J. Geosci. 2019, 12, 171. [Google Scholar] [CrossRef]
- Petermann, E.; Bossew, P. Mapping indoor radon hazard in Germany: The geogenic component. Sci. Total Environ. 2021, 780, 146601. [Google Scholar] [CrossRef] [PubMed]
- Vaupotič, J. Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives. Sustainability 2024, 16, 2424. [Google Scholar] [CrossRef]
- Zhao, P.L.; Yuan, S.D.; Mao, J.W.; Yuan, Y.B.; Zhao, H.J.; Zhang, D.L.; Shuang, Y. Constraints on the timing and genetic link of the large-scale accumulationof proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of theworld-class Dongpo orefield, Nanling Range, South China. Ore. Geol. Rev. 2018, 95, 1140–1160. [Google Scholar] [CrossRef]
- Wu, W.B.; Tan, K.X.; Han, S.L.; Xie, Y.S.; Tan, W.Y.; Guo, Y.Y.; Cai, Q.E. Fractal Analysis of Terrestrial Gamma Ray Spectrometry in Jinshiling District of Chenzhou. Hunan. J. Univ. South China (Nat. Sci. Ed.) 2018, 32, 20–24, (In Chinese with English Abstract). [Google Scholar]
- Joshi, V.; Dutt, S.; Yadav, M.; Mishra, R.; Ramola, R.C. Measurement of radon, thoron and their progeny concentrations in the dwellings of pauri garhwal, uttarakhand, india. Radiat. Protect. Dosim. 2016, 171, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.Q.; Fang, C.L.; Li, Y.P.; Meng, Q.L. Investigation and analysis of the daily variation features of the indoor and outdoor radon concentrations and the corresponding influential factors in Xi’an City. J. Safety Environ. 2017, 17, 2415–2420, (In Chinese with English Abstract). [Google Scholar]
- Tan, W.Y.; Li, Y.M.; Tan, K.X.; Xie, Y.S.; Han, S.L.; Wang, P. Distribution of radon and risk assessment of its radiation dose in groundwater drinking for village people nearby the W-polymetallic metallogenic district at Dongpo in southern Hunan province, China. Appl. Radiat. Isot. 2019, 151, 39–45. [Google Scholar] [CrossRef]
- Mao, J.W.; Li, H.Y. Evolution of the Qianlishan Granite Stock and its Relation to the Shizhuyuan Polymetallic Tungsten Deposit. Int. Geol. Rev. 1995, 39, 63–80. [Google Scholar]
- Shang, B.; He, Q.H.; Wang, Z.Y. Studies of indoor action level of radon in China. Chin. J. Radiol. Med. Prot. 2003, 23, 462–465, (In Chinese with English Abstract). [Google Scholar]
- Pan, Z. Exposure resulted from radon and its decay products in air in China. Radiat. Prot. 2003, 23, 129–138, (In Chinese with English Abstract). [Google Scholar]
- ICRP. Occupational intakes of radionuclides: Part 3. ICRP Publication 137. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef] [PubMed]
- Kendall, G.M.; Smith, T.J. Doses to organs and tissues from radon and its decayproducts. J. Radiol. Prot. 2002, 22, 389–406. [Google Scholar] [CrossRef] [PubMed]
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 37, 1–332. [Google Scholar]
- GB50325-2010; Code for Indoor Environmental Pollution Control of Civil Building Engineering. Standards Press of China: Beijing, China, 2010.
- Lan, X.W.; Mei, A.H.; Pan, W.E.J. The Report on the Indoor Radon Concentration of Guangzhou. Guangzhou Archit. 2010, 38, 23–26, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.Q.; Luo, K.X.; Zhou, C.W. Concentration of radon in indoor and outdoor environment in Hunan Province and the corresponding dose to residents. Chin. J. Radiol. Med. Prot. 1992, 12, 94–97, (In Chinese with English Abstract). [Google Scholar]
Location | Indoor | Outdoor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Houses | Min | Max | Average | σ | Points | Min | Max | Average | σ | |
Yaoshan | 26 | 72.3 | 705.6 | 254.1 | 168.9 | 80 | 21.6 | 167 | 43.2 | 20.0 |
Tiandongli | 7 | 103.6 | 285.7 | 183.2 | 59.9 | 28 | 16.9 | 53.5 | 30.2 | 8.1 |
Taiqian | 14 | 89.6 | 418.2 | 207.8 | 97.0 | 63 | 20.7 | 44.5 | 32.1 | 5.8 |
Zhangjiapu | 9 | 81.9 | 212 | 157.2 | 44.4 | 55 | 17.1 | 41.2 | 29.4 | 5.8 |
Dongpo | 18 | 78.7 | 331.1 | 212.1 | 84.2 | 58 | 16.7 | 83.5 | 32.8 | 9.5 |
Study area | 74 | 72.3 | 705.6 | 216.6 | 121.1 | 284 | 16.7 | 167.0 | 34.6 | 13.4 |
Location | AEDinh | AEDbl | Total | |||
---|---|---|---|---|---|---|
Indoor | Outdoor | Indoor | Outdoor | |||
Yaoshan | Min | 4.43 | 0.69 | 0.08 | 0.01 | 5.21 |
Max | 43.25 | 5.37 | 0.74 | 0.02 | 49.38 | |
average | 15.58 | 1.39 | 0.25 | 0.01 | 17.23 | |
Tiandongli | Min | 6.35 | 0.54 | 0.10 | 0.01 | 7.00 |
Max | 17.51 | 1.72 | 0.31 | 0.02 | 19.56 | |
average | 11.23 | 0.97 | 0.19 | 0.01 | 12.40 | |
Taiqian | Min | 5.49 | 0.67 | 0.09 | 0.01 | 6.26 |
Max | 25.63 | 1.43 | 0.44 | 0.02 | 27.52 | |
average | 12.74 | 1.03 | 0.22 | 0.01 | 14.00 | |
Zhangjiapu | Min | 5.02 | 0.55 | 0.09 | 0.01 | 5.67 |
Max | 12.99 | 1.33 | 0.22 | 0.01 | 14.55 | |
average | 9.64 | 0.95 | 0.16 | 0.01 | 10.76 | |
Dongpo | Min | 4.82 | 0.54 | 0.08 | 0.01 | 5.45 |
Max | 20.29 | 2.69 | 0.35 | 0.02 | 23.35 | |
average | 13.00 | 1.06 | 0.22 | 0.01 | 14.29 | |
Study area | average | 13.28 | 1.11 | 0.23 | 0.01 | 14.63 |
Worldwide average | 2.45 | 0.32 | 0.04 | 0.004 | 2.81 |
Location | Lung | Stomach | Small Intestine | Colon | RBM a | Bone Surface | Liver | Breast | Kidney | Gonads | Brain | Bladder | Muscle | Fetus | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yaoshan | Min | 10.35 | 0.05 | 0.05 | 0.05 | 0.08 | 0.41 | 0.12 | 0.04 | 1.49 | 0.04 | 0.05 | 0.06 | 0.04 | 0.02 |
Max | 97.54 | 0.51 | 0.47 | 0.43 | 0.74 | 3.90 | 1.13 | 0.39 | 14.05 | 0.39 | 0.43 | 0.55 | 0.39 | 0.16 | |
average | 33.79 | 0.18 | 0.16 | 0.15 | 0.26 | 1.35 | 0.39 | 0.14 | 4.87 | 0.14 | 0.15 | 0.19 | 0.14 | 0.06 | |
Tiandongli | Min | 13.72 | 0.07 | 0.07 | 0.06 | 0.10 | 0.55 | 0.16 | 0.05 | 1.98 | 0.05 | 0.06 | 0.08 | 0.05 | 0.02 |
Max | 38.38 | 0.20 | 0.18 | 0.17 | 0.29 | 1.54 | 0.45 | 0.15 | 5.53 | 0.15 | 0.17 | 0.21 | 0.15 | 0.06 | |
average | 24.29 | 0.13 | 0.12 | 0.11 | 0.18 | 0.97 | 0.28 | 0.10 | 3.50 | 0.10 | 0.11 | 0.14 | 0.10 | 0.04 | |
Taiqian | Min | 12.35 | 0.06 | 0.06 | 0.05 | 0.09 | 0.49 | 0.14 | 0.05 | 1.78 | 0.05 | 0.05 | 0.07 | 0.05 | 0.02 |
Max | 53.51 | 0.28 | 0.26 | 0.24 | 0.41 | 2.14 | 0.62 | 0.21 | 7.71 | 0.21 | 0.24 | 0.30 | 0.21 | 0.09 | |
average | 27.38 | 0.14 | 0.13 | 0.12 | 0.21 | 1.10 | 0.32 | 0.11 | 3.94 | 0.11 | 0.12 | 0.15 | 0.11 | 0.04 | |
Zhangjiapu | Min | 11.14 | 0.06 | 0.05 | 0.05 | 0.08 | 0.45 | 0.13 | 0.04 | 1.60 | 0.04 | 0.05 | 0.06 | 0.04 | 0.02 |
Max | 28.60 | 0.15 | 0.14 | 0.13 | 0.22 | 1.14 | 0.33 | 0.11 | 4.12 | 0.11 | 0.13 | 0.16 | 0.11 | 0.05 | |
average | 21.11 | 0.11 | 0.10 | 0.09 | 0.16 | 0.84 | 0.24 | 0.08 | 3.04 | 0.08 | 0.09 | 0.12 | 0.08 | 0.03 | |
Dongpo | Min | 10.73 | 0.06 | 0.05 | 0.05 | 0.08 | 0.43 | 0.12 | 0.04 | 1.54 | 0.04 | 0.05 | 0.06 | 0.04 | 0.02 |
Max | 46.17 | 0.24 | 0.22 | 0.20 | 0.35 | 1.85 | 0.54 | 0.18 | 6.65 | 0.18 | 0.20 | 0.26 | 0.18 | 0.08 | |
average | 27.95 | 0.15 | 0.13 | 0.12 | 0.21 | 1.12 | 0.32 | 0.11 | 4.02 | 0.11 | 0.12 | 0.16 | 0.11 | 0.05 | |
Study area | average | 28.63 | 0.15 | 0.14 | 0.13 | 0.22 | 1.15 | 0.33 | 0.10 | 4.12 | 0.11 | 0.13 | 0.16 | 0.11 | 0.05 |
Global average b | 5.57 | 0.03 | 0.03 | 0.02 | 0.04 | 0.22 | 0.06 | 0.02 | 0.80 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 |
Location | Mean Total Effective Dose (mSv y−1) | Lifetime Risk Probability (×10−2) | ||
---|---|---|---|---|
Cancer | Heritable Effects | Total | ||
Yaoshan | 17.23 | 6.6 | 0.2 | 6.8 |
Tiandongli | 12.40 | 4.8 | 0.2 | 5.0 |
Taiqian | 14.00 | 5.4 | 0.2 | 5.6 |
Zhangjiapu | 8.06 | 3.1 | 0.1 | 3.2 |
Dongpo | 14.29 | 5.5 | 0.2 | 5.7 |
Study area | 14.63 | 5.6 | 0.2 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.; Nie, Y. Radon Concentration in Air and Evaluation of the Radiation Dose in Villages near Shizhuyuan, Southern Hunan, China. Atmosphere 2024, 15, 786. https://doi.org/10.3390/atmos15070786
Tan W, Nie Y. Radon Concentration in Air and Evaluation of the Radiation Dose in Villages near Shizhuyuan, Southern Hunan, China. Atmosphere. 2024; 15(7):786. https://doi.org/10.3390/atmos15070786
Chicago/Turabian StyleTan, Wanyu, and Yixun Nie. 2024. "Radon Concentration in Air and Evaluation of the Radiation Dose in Villages near Shizhuyuan, Southern Hunan, China" Atmosphere 15, no. 7: 786. https://doi.org/10.3390/atmos15070786
APA StyleTan, W., & Nie, Y. (2024). Radon Concentration in Air and Evaluation of the Radiation Dose in Villages near Shizhuyuan, Southern Hunan, China. Atmosphere, 15(7), 786. https://doi.org/10.3390/atmos15070786