Dropsonde Data Impact on Rain Forecasts in Taiwan Under Southwesterly Flow Conditions with Observing System Simulation Experiments
Abstract
:1. Introduction
- Can a precipitation case dominated by the southwesterly flow associated with an SWV achieve better rainfall forecasts through DA of traditional observations and extra dropsonde observations?
- What are the key factors contributing to the improvement in forecasting accuracy?
- How long and how far can the DA affect the forecasts?
2. Case Description and Experimental Design
3. Precipitation Forecasts
3.1. Comparisons of NR with Observations
3.2. Precipitation Verification
4. The Impact of DA
4.1. Initial Fields
4.2. Forecast Fields
4.3. Forecasts of the Front
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.-S.; Chen, Y.-L. The rainfall characteristics of Taiwan. Mon. Weather Rev. 2003, 131, 1323–1341. [Google Scholar] [CrossRef]
- Chen, T.-C.; Yen, M.-C.; Hsieh, J.-C.; Arritt, R.W. Diurnal and seasonal variations of the rainfall measured by the automatic rainfall and meteorological telemetry system in Taiwan. Bull. Am. Meteorol. Soc. 1999, 80, 2299–2312. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J.C. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Ray, P.S.; Robinson, A.; Lin, Y. Radar analysis of a TAMEX frontal system. Mon. Weather Rev. 1991, 119, 2519–2539. [Google Scholar] [CrossRef]
- Chen, G.T.-J.; Liang, C.-Y. A midlevel vortex observed in the Taiwan Area Mesoscale Experiment (TAMEX). J. Meteorol. Soc. Jpn. 1992, 70, 25–41. [Google Scholar] [CrossRef]
- Ding, Y. Summer monsoon rainfalls in China. J. Meteorol. Soc. Jpn. 1992, 70, 373–396. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Pasken, R.W.; Chang, H.-W. The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from dual-Doppler measurements. Mon. Weather Rev. 1992, 120, 1816–1836. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.-L.; Lee, W.-C. Analysis of a heavy rainfall event during TAMEX. Mon. Weather Rev. 1997, 125, 1060–1082. [Google Scholar] [CrossRef]
- Tu, C.-C.; Chen, Y.-L.; Lin, P.-L.; Du, Y. Characteristics of the Marine Boundary Layer Jet over the South China Sea during the Early Summer Rainy Season of Taiwan. Mon. Weather Rev. 2019, 147, 457–475. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Y.; Du, Y.; Chan, J.C. Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteorol. Soc. Jpn. 2020, 98, 213–233. [Google Scholar] [CrossRef]
- Chien, F.-C.; Chiu, Y.-C.; Tsou, C.-H. A Climatological Study of Southwesterly Flows and Heavy Precipitation in Taiwan during Mei-yu Seasons from 1979 to 2018. J. Meteorol. Soc. Jpn. 2021, 99, 913–931. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Tu, C.-C.; Hsiao, F.; Chen, C.-S.; Lin, P.-L.; Lin, P.-H. An overview of low-level jets (LLJs) and their roles in heavy rainfall over the Taiwan area during the early summer rainy season. Meteorology 2022, 1, 64–112. [Google Scholar] [CrossRef]
- Chen, C.-S.; Chen, W.-C.; Chen, Y.-L.; Lin, P.-L.; Lai, H.-C. Investigation of orographic effects on two heavy rainfall events over southwestern Taiwan during the Mei-yu season. Atmos. Res. 2005, 73, 101–130. [Google Scholar] [CrossRef]
- Chen, G.T.-J.; Wang, C.-C.; Chang, S.-W. A diagnostic case study of mei-yu frontogenesis and development of wavelike frontal disturbances in the subtropical environment. Mon. Weather Rev. 2008, 136, 41–61. [Google Scholar] [CrossRef]
- Chen, G.T.-J.; Yu, C.-C. Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Weather Rev. 1988, 116, 884–891. [Google Scholar] [CrossRef]
- Chien, F.-C.; Chiu, Y.-C. A Composite Study of Southwesterly Flows and Rainfall in Taiwan. J. Meteorol. Soc. Jpn. 2019, 97, 1023–1040. [Google Scholar] [CrossRef]
- Tu, C.-C.; Chen, Y.-L.; Lin, P.-L.; Lin, P.-H. The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. Terr. Atmos. Ocean. Sci. 2020, 31, 159–176. [Google Scholar] [CrossRef]
- Volonté, A.; Turner, A.G.; Schiemann, R.; Vidale, P.L.; Klingaman, N.P. Characterising the interaction of tropical and extratropical air masses controlling East Asian summer monsoon progression using a novel frontal detection approach. Weather Clim. Dynam. 2022, 3, 575–599. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Chien, F.-C. Long-Term Trends and Interannual Variability of Southwesterly Flows around Southern Taiwan during 44 Mei-Yu Seasons. J. Appl. Meteorol. Climatol. 2023, 62, 1205–1222. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chuang, P.-Y.; Chen, S.-T.; Lee, D.-I.; Tsuboki, K. Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model. Nat. Hazards Earth Syst. Sci. 2022, 22, 1795–1817. [Google Scholar] [CrossRef]
- Chien, F.-C.; Chiu, Y.-C. The Impact of Large-scale Environments and a Southwest Vortex on Heavy Rainfall in Southern Taiwan in Late May 2020. Mon. Weather Rev. 2024, 152, 745–767. [Google Scholar] [CrossRef]
- Chien, F.-C.; Hong, J.-S.; Chang, W.-J.; Jou, B.J.-D.; Lin, P.-L.; Lin, T.-E.; Liu, S.-P.; Miou, H.-J.; Chen, C.-Y. A sensitivity study of the WRF model. Part II: Verification of quantitative precipitation forecasts. Atmos. Sci. 2006, 34, 261–276. [Google Scholar]
- Demirdjian, R.; Norris, J.R.; Martin, A.; Ralph, F.M. Dropsonde observations of the ageostrophy within the pre-cold-frontal low-level jet associated with atmospheric rivers. Mon. Weather Rev. 2020, 148, 1389–1406. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Rotunno, R. Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Weather Rev. 2005, 133, 889–910. [Google Scholar] [CrossRef]
- Xu, W.; Zipser, E.J.; Chen, Y.-L.; Liu, C.; Liou, Y.-C.; Lee, W.-C.; Jong-Dao Jou, B. An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Weather Rev. 2012, 140, 2555–2574. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chou, K.-H.; Wang, Y.; Kuo, Y.-H. Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci. 2006, 63, 2383–2395. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lin, P.-H.; Aberson, S.; Yeh, T.-C.; Huang, W.-P.; Chou, K.-H.; Hong, J.-S.; Lu, G.-C.; Fong, C.-T.; Hsu, K.-C. Dropwindsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR). Bull. Am. Meteorol. Soc. 2005, 86, 787–790. [Google Scholar]
- Burpee, R.W.; Marks, D.G.; Merrill, R.T. An assessment of Omega dropwindsonde data in track forecasts of Hurricane Debby (1982). Bull. Am. Meteorol. Soc. 1984, 65, 1050–1058. [Google Scholar] [CrossRef]
- Franklin, J.L.; DeMaria, M. The impact of Omega dropwindsonde observations on barotropic hurricane track forecasts. Mon. Weather Rev. 1992, 120, 381–391. [Google Scholar] [CrossRef]
- Majumdar, S.J. A review of targeted observations. Bull. Am. Meteorol. Soc. 2016, 97, 2287–2303. [Google Scholar] [CrossRef]
- Chien, F.-C.; Chiu, Y.-C. Assessing the Impact of Dropsonde Data on Rain Forecasts in Taiwan with Observing System Simulation Experiments. Atmosphere 2021, 12, 1672. [Google Scholar] [CrossRef]
- Bishop, G.; Welch, G. An introduction to the kalman filter. Proc. SIGGRAPH Course 2001, 8, 41. [Google Scholar]
- Wang, X.; Bishop, C.H. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 2003, 60, 1140–1158. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Weather Rev. 2008, 136, 5116–5131. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Weather Rev. 2008, 136, 5132–5147. [Google Scholar] [CrossRef]
- Chien, F.-C.; Chiu, Y.-C. Factors Leading to Heavy Rainfall in Southern Taiwan in the Early Mei-yu Season of 2020. Mon. Weather Rev. 2023, 151, 1885–1908. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Cheng, L.; Bao, J.-W. Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest vortex. Mon. Weather Rev. 1988, 116, 2481–2504. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Tan, Z.-M. Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res. Atmos. 2014, 119, 11, 543–511, 561. [Google Scholar] [CrossRef]
- Feng, X.; Liu, C.; Fan, G.; Liu, X.; Feng, C. Climatology and structures of southwest vortices in the NCEP climate forecast system reanalysis. J. Clim. 2016, 29, 7675–7701. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Duda, M.; Huang, X.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3, NCAR Technical Note, Mesoscale and Microscale Meteorology Division; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Hersbach, H. The ERA5 Atmospheric Reanalysis. AGUFM 2016, 2016, NG33D-01. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Lim, K.-S.S.; Hong, S.-Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.-Y.; Chen, Y. An observing system simulation experiment for the impact of MTG candidate infrared sounding mission on regional forecasts: System development and preliminary results. Int. Sch. Res. Not. 2013, 2013, 971501. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Tao, W.-K.; Simpson, J.; McCumber, M. An ice-water saturation adjustment. Mon. Weather Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef]
- Atlas, R.; Bucci, L.; Annane, B.; Hoffman, R.; Murillo, S. Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Mar. Technol. Soc. J. 2015, 49, 140–148. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
Experiment Names | Sounding Data/ Interval/Number | Surface Data/ Interval/Number | Dropsonde Data/ Interval/Number |
---|---|---|---|
NODA | no | no | no |
CTRL | yes/12 h/197 | yes/6 h/1408 | no |
T5D24 | yes/12 h/197 | yes/6 h/1408 | yes/12 h/24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, F.-C.; Chiu, Y.-C. Dropsonde Data Impact on Rain Forecasts in Taiwan Under Southwesterly Flow Conditions with Observing System Simulation Experiments. Atmosphere 2024, 15, 1272. https://doi.org/10.3390/atmos15111272
Chien F-C, Chiu Y-C. Dropsonde Data Impact on Rain Forecasts in Taiwan Under Southwesterly Flow Conditions with Observing System Simulation Experiments. Atmosphere. 2024; 15(11):1272. https://doi.org/10.3390/atmos15111272
Chicago/Turabian StyleChien, Fang-Ching, and Yen-Chao Chiu. 2024. "Dropsonde Data Impact on Rain Forecasts in Taiwan Under Southwesterly Flow Conditions with Observing System Simulation Experiments" Atmosphere 15, no. 11: 1272. https://doi.org/10.3390/atmos15111272
APA StyleChien, F. -C., & Chiu, Y. -C. (2024). Dropsonde Data Impact on Rain Forecasts in Taiwan Under Southwesterly Flow Conditions with Observing System Simulation Experiments. Atmosphere, 15(11), 1272. https://doi.org/10.3390/atmos15111272