Interdecadal Variations in the Seasonal Cycle of Explosive Growth of Southern Hemisphere Storms with Impacts on Southern Australian Rainfall
Abstract
:1. Introduction
1.1. Decline of SWWA Rainfall and Circulation and Storm Changes
1.2. Australian Millennium Drought and Weather System Changes
1.3. Rainfall Variability and Changes in Atmospheric and Oceanic Circulation
1.4. Simulations and Projections of Southern Hemisphere Circulation Changes
1.5. Weather Systems Influencing the Seasonal Cycle of Southern Australian Rainfall
1.6. Aims and Structure
2. Datasets
2.1. Rainfall Dataset
2.2. Reanalysis Dataset
3. Methodology
4. Seasonal and Decadal Changes in Southern Australian Rainfall
5. Indices of Atmospheric and Oceanic Processes Affecting Rainfall
5.1. Interannual Variability of Rainfall and Local Circulation Indices
5.2. Interannual Variability of Rainfall and Large-Scale Circulation Indices
5.3. Decadal Variability of Rainfall and Local Circulation Indices
5.4. Decadal Variability of Rainfall and Large-Scale Circulation Indices
6. Circulation and Storm Track Changes in the Early Twenty-First Century
6.1. Decadal Circulation and Storm Track Changes Between 1949 to 1968 and 1997 to 2016
6.1.1. Changes in Zonal Winds
6.1.2. Changes in Standard Deviations of Weather Systems with Periods Days
6.1.3. Changes in Standard Deviations of Weather Systems with Periods Days
6.2. Decadal Circulation and Storm Track Changes Between 1975 to 1994 and 1997 to 2016
6.2.1. Changes in Zonal Winds
6.2.2. Changes in Standard Deviations of Weather Systems with Periods Days
6.2.3. Changes in Standard Deviations of Weather Systems with Periods Days
7. Storm Track Changes During the Australian Millennium Drought
7.1. Changes in Storm Tracks Between 1949 to 1968 and the AMD
7.1.1. Changes in STDs of Weather Systems with Periods Days
7.1.2. Changes in STDs of Weather Systems with Periods Days
7.2. Changes in Storm Tracks Between 1975 to 1994 and the AMD
7.2.1. Changes in STDs of Weather Systems with Periods Days
7.2.2. Changes in STDs of Weather Systems with Periods Days
8. Weather Systems and Southern Australian Rainfall Changes
8.1. Weather Systems and SEA Rainfall Changes
8.1.1. Changes in Weather Systems and SEA Rainfall During the AMD
8.1.2. Changes in Weather Systems and SEA Rainfall in 1997 to 2016
8.2. Weather System and SWWA Rainfall Changes
8.2.1. Changes in Weather Systems and SWWA Rainfall During the AMD
8.2.2. Changes in Weather Systems and SWWA Rainfall in 1997 to 2016
8.3. Observations of Weather Systems Upstream and over SWWA and SEA
9. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Meaning |
20CR | 20th-Century Reanalysis |
AMD | Australian Millennium Drought |
CL | Confidence Level |
CMIP3 | Coupled Model Intercomparison Project Phase 3 |
CMIP5 | Coupled Model Intercomparison Project Phase 5 |
ECWMF | European Centre for Medium-Range Weather Forecasting |
ENSO | El Niño Southern Oscillation |
EOF | Empirical Orthogonal Function |
ERA40 | European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Re-Analysis |
hPa | Hectopascal |
IOD | Indian Ocean Dipole |
IPO | Interdecadal Pacific Oscillation |
JRA55 | Japanese 55-year Reanalysis |
MJO | Madden Julian Oscillation |
NCAR | National Center for Atmospheric Research |
NCEP | National Centers for Environmental Prediction |
NNR | National Centers for Environmental Prediction and the National Center for Atmospheric Research Reanalysis |
NWCB | North-West Cloud Band |
POP | Principal Oscillation Pattern |
SAJ | Subtropical Atmospheric Jet |
SAM | Southern Annular Mode |
SEA | Southeastern Australia |
SH | Southern Hemisphere |
SLP | Sea Level Pressure |
SOI | Southern Oscillation Index |
SORD | Southern Ocean Regional Dipole |
SST | Sea Surface Temperature |
STD | Standard deviation |
SWWA | Southwest Western Australia |
u700 | Zonal Wind at 700 hPa (equivalent to u700) |
UTC | Coordinated Universal Time |
ω850 | 850 hPa Vertical Velocity (equivalent to ω850) |
Appendix A. Computation of Growing and Decaying Weather Systems
Appendix B. Southern Australian Rainfall Time Series
References
- Dey, R.; Lewis, S.; Abram, N.; Arblaster, J. A review of past and projected changes in Australia’s rainfall. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e577. [Google Scholar] [CrossRef]
- McKay, R.C.; Boschat, G.; Rudeva, I.; Pepler, A.; Purich, A.; Dowdy, A.; Hope, P.; Gillett, Z.E.; Rauniyar, S. Can southern Australian rainfall decline be explained? A review of possible drivers. WIREs Clim. Change 2023, 14, e820. [Google Scholar] [CrossRef]
- CSIRO and Bureau of Meteorology. Climate Change in Australia. Projections for Australia’s NRM Regions; CSIRO:EP154327; CSIRO and Bureau of Meteorology: Melbourne, Australia, 2015; p. 222. [Google Scholar]
- Frederiksen, J.S.; Osbrough, S.L. Tipping Points and Changes in Australian Climate and Extremes. Climate 2022, 10, 73. [Google Scholar] [CrossRef]
- Osbrough, S.L.; Frederiksen, J.S. Interdecadal changes in Southern Hemisphere winter explosive storms and Southern Australian rainfall. Clim. Dynam. 2021, 56, 3103–3130. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Frederiksen, J.S.; Frederiksen, C.S.; Horenko, I. Beyond the First Tipping Points of Southern Hemisphere Climate. Climate 2024, 12, 81. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M. El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature 1996, 382, 56–60. [Google Scholar] [CrossRef]
- Nitta, T.; Yamada, S. Recent Warming of Tropical Sea Surface Temperature and Its Relationship to the Northern Hemisphere Circulation. J. Meteorol. Soc. Japan Ser. II 1989, 67, 375–383. [Google Scholar] [CrossRef]
- Trenberth, K.E. Recent Observed Interdecadal Climate Changes in the Northern Hemisphere. Bull. Am. Meteorol. Soc. 1990, 71, 988–993. [Google Scholar] [CrossRef]
- Straus, D.M.; Molteni, F.; Corti, S. Atmospheric Regimes: The Link between Weather and the Large-Scale Circulation. In Nonlinear and Stochastic Climate Dynamics; Franzke, C.L.E., O’Kane, T.J., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 105–135. [Google Scholar]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dynam. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Kiem, A.S.; Franks, S.W. Multi-decadal variability of drought risk, eastern Australia. Hydrol. Process. 2004, 18, 2039–2050. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T.; Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. 2009, 36, L11705. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; England, M.H.; McIntosh, P.C.; Meyers, G.A.; Pook, M.J.; Risbey, J.S.; Gupta, A.S.; Taschetto, A.S. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 2009, 36, L04706. [Google Scholar] [CrossRef]
- Whelan, J.A.; Frederiksen, J.S. Dynamics of the perfect storms: La Niña and Australia’s extreme rainfall and floods of 1974 and 2011. Clim. Dynam. 2017, 48, 3935–3948. [Google Scholar] [CrossRef]
- L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.; Gottschalck, J.; Halpert, M.S.; Huang, B. Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc. 2017, 98, 1363–1382. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Francey, R.J. Unprecedented strength of Hadley circulation in 2015–2016 impacts on CO2 interhemispheric difference. Atmos. Chem. Phys. 2018, 18, 14837–14850. [Google Scholar] [CrossRef]
- Johnson, Z.F.; Chikamoto, Y.; Luo, J.-J.; Mochizuki, T. Ocean impacts on Australian interannual to decadal precipitation variability. Climate 2018, 6, 61. [Google Scholar] [CrossRef]
- Frederiksen, C.S.; Frederiksen, J.S.; Sisson, J.M.; Osbrough, S.L. Trends and projections of Southern Hemisphere baroclinicity: The role of external forcing and impact on Australian rainfall. Clim. Dynam. 2017, 48, 3261–3282. [Google Scholar] [CrossRef]
- Grose, M.R.; Foster, S.; Risbey, J.S.; Osbrough, S.; Wilson, L. Using indices of atmospheric circulation to refine southern Australian winter rainfall climate projections. Clim. Dynam. 2019, 53, 5481–5493. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Frederiksen, C.S.; Osbrough, S.L.; Sisson, J.M. Causes of changing Southern Hemisphere weather systems. Manag. Clim. Change 2010, 8, 85–98. [Google Scholar]
- Corti, S.; Molteni, F.; Palmer, T.N. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 1999, 398, 799–802. [Google Scholar] [CrossRef]
- Franzke, C.L.E.; O’Kane, T.J.; Monselesan, D.P.; Risbey, J.S.; Horenko, I. Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability. Nonlinear. Process. Geophys. 2015, 22, 513–525. [Google Scholar] [CrossRef]
- Frederiksen, C.S.; Frederiksen, J.S.; Sisson, J.M.; Osbrough, S.L. Australian winter circulation and rainfall changes and projections. Int. J. Clim. Change Strateg. Manag. 2011, 3, 170–188. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Risbey, J.S.; Franzke, C.; Horenko, I.; Monselesan, D.P. Changes in the Metastability of the Midlatitude Southern Hemisphere Circulation and the Utility of Nonstationary Cluster Analysis and Split-Flow Blocking Indices as Diagnostic Tools. J. Atmos. Sci. 2013, 70, 824–842. [Google Scholar] [CrossRef]
- Freitas, A.C.V.; Frederiksen, J.S.; Whelan, J.; O’Kane, T.J.; Ambrizzi, T. Observed and simulated inter-decadal changes in the structure of Southern Hemisphere large-scale circulation. Clim. Dynam. 2015, 45, 2993–3017. [Google Scholar] [CrossRef]
- Frederiksen, C.S.; Grainger, S. The role of external forcing in prolonged trends in Australian rainfall. Clim. Dynam. 2015, 45, 2455–2468. [Google Scholar] [CrossRef]
- Allan, R.J.; Haylock, M.R. Circulation Features Associated with the Winter Rainfall Decrease in Southwestern Australia. J. Clim. 1993, 6, 1356–1367. [Google Scholar] [CrossRef]
- Bates, B.C.; Chandler, R.E.; Charles, S.P.; Campbell, E.P. Assessment of apparent nonstationarity in time series of annual inflow, daily precipitation, and atmospheric circulation indices: A case study from southwest Western Australia. Water Resour. Res. 2010, 46, W00H02. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Dynamics of late autumn rainfall reduction over southeastern Australia. Geophys. Res. Lett. 2008, 35, L09708. [Google Scholar] [CrossRef]
- Hope, P.; Grose, M.R.; Timbal, B.; Dowdy, A.J.; Bhend, J.; Katzfey, J.J.; Bedin, T.; Wilson, L.; Whetton, P.H. Seasonal and regional signature of the projected southern Australian rainfall reduction. Aust. Meteorol. Oceanogr. 2015, 65, 54–71. [Google Scholar] [CrossRef]
- Pezza, A.B.; Durrant, T.; Simmonds, I.; Smith, I. Southern Hemisphere Synoptic Behavior in Extreme Phases of SAM, ENSO, Sea Ice Extent, and Southern Australia Rainfall. J. Clim. 2008, 21, 5566–5584. [Google Scholar] [CrossRef]
- Pook, M.J.; Risbey, J.S.; McIntosh, P.C. The Synoptic Climatology of Cool-Season Rainfall in the Central Wheatbelt of Western Australia. Mon. Weather Rev. 2012, 140, 28–43. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Sen Gupta, A.; Pook, M.J.; England, M.H. Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J. Clim. 2008, 21, 5113–5134. [Google Scholar] [CrossRef]
- Pittock, A. Actual and anticipated changes in Australia’s climate. In Greenhouse: Planning for Climate Change; Pearman, G.I., Ed.; CSIRO: Melbourne, Australia, 1988; pp. 35–51. [Google Scholar]
- Sadler, B.; Mauger, G.; Stokes, R. The water resource implications of a drying climate in south-west Western Australia. In Greenhouse: Planning for Climate Change; CSIRO: Melbourne, Australia, 1988; pp. 296–311. [Google Scholar]
- Nicholls, N. Detecting, Understanding and Attributing Climate Change; Australian Greenhouse Office, Department of the Environment and Water Resources Commonwealth of Australia: Canberra, Australia, 2007; p. 26. [Google Scholar]
- Bates, B.C.; Hope, P.; Ryan, B.; Smith, I.; Charles, S. Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Clim. Change 2008, 89, 339–354. [Google Scholar] [CrossRef]
- Hope, P.K.; Drosdowsky, W.; Nicholls, N. Shifts in the synoptic systems influencing southwest Western Australia. Clim. Dynam. 2006, 26, 751–764. [Google Scholar] [CrossRef]
- Bureau of Meteorology and CSIRO. State of the Climate 2020. Available online: www.csiro.au/state-of-the-climate (accessed on 25 September 2024).
- Frederiksen, J.S.; Frederiksen, C.S. Interdecadal changes in southern hemisphere winter storm track modes. Tellus A 2007, 59, 599–617. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Kållberg, P.; Simmons, A.; Uppala, S.; Fuentes, M. The ERA-40 Archive. European Centre for Medium-Range Weather Forecasts: Reading, UK, 2007; p. 36. [Google Scholar]
- Joseph, P.V.; Sabin, T. Trends in SST and reanalysis 850 and 200 hPa wind data of Asian summer monsoon season during the recent six decades. In Proceedings of the Third WCRP International Conference on Reanalysis, Tokyo, Japan, 28 January–1 February 2008. [Google Scholar]
- Bromwich, D.H.; Fogt, R.L. Strong Trends in the Skill of the ERA-40 and NCEP–NCAR Reanalyses in the High and Midlatitudes of the Southern Hemisphere, 1958–2001. J. Clim. 2004, 17, 4603–4619. [Google Scholar] [CrossRef]
- Hertzog, A.; Basdevant, C.; Vial, F. An Assessment of ECMWF and NCEP–NCAR Reanalyses in the Southern Hemisphere at the End of the Presatellite Era: Results from the EOLE Experiment (1971–1972). Mon. Weather Rev. 2006, 134, 3367–3383. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Rikus, L. A simple climatology of westerly jet streams in global reanalysis datasets part 1: Mid-latitude upper tropospheric jets. Clim. Dynam. 2018, 50, 2285–2310. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Risbey, J.S.; Monselesan, D.P.; Horenko, I.; Franzke, C.L.E. On the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere troposphere. Clim. Dynam. 2016, 46, 3567–3597. [Google Scholar] [CrossRef]
- Harries, D.; O’Kane, T.J. Dynamic Bayesian Networks for Evaluation of Granger Causal Relationships in Climate Reanalyses. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002442. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Fawcett, R.J.B. Seasonal climate summary southern hemisphere (summer 2003/04): A warm summer in the east and wet conditions in the northwest. Aust. Meteorol. Mag. 2004, 53, 305–317. Available online: http://www.bom.gov.au/jshess/docs/2004/fawcett_hres.pdf (accessed on 27 September 2024).
- Gallant, A.J.E.; Hennessy, K.J.; Risbey, J. Trends in rainfall indices for six Australian regions: 1910-2005. Aust. Meteorol. Mag. 2007, 56, 223–239. [Google Scholar]
- Lin, Z.D.; Li, Y.; Liu, Y.; Hu, A.X. The Decadal Reduction of Southeastern Australian Autumn Rainfall since the Early 1990s: A Response to Sea Surface Temperature Warming in the Subtropical South Pacific. J Clim. 2020, 33, 2249–2261. [Google Scholar] [CrossRef]
- Murphy, B.F.; Timbal, B. A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol. 2008, 28, 859–879. [Google Scholar] [CrossRef]
- Risbey, J.S.; McIntosh, P.C.; Pook, M.J. Synoptic components of rainfall variability and trends in southeast Australia. Int. J. Climatol. 2013, 33, 2459–2472. [Google Scholar] [CrossRef]
- Risbey, J.S.; Pook, M.J.; McIntosh, P.C. Spatial trends in synoptic rainfall in southern Australia. Geophys. Res. Lett. 2013, 40, 3781–3785. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Kiem, A.S.; Moran, R. Links between the Big Dry in Australia and hemispheric multi-decadal climate variability-implications for water resource management. Hydrol. Earth Syst. Sc. 2014, 18, 2235–2256. [Google Scholar] [CrossRef]
- Watterson, I.G. Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model. J. Geophys. Res.-Atmos. 2010, 115, D10108. [Google Scholar] [CrossRef]
- Pook, M.J.; Lisson, S.; Risbey, J.; Ummenhofer, C.C.; McIntosh, P.; Rebbeck, M. The autumn break for cropping in southeast Australia: Trends, synoptic influences and impacts on wheat yield. Int. J. Climatol. 2009, 29, 2012–2026. [Google Scholar] [CrossRef]
- Timbal, B. The continuing decline in South-East Australian rainfall: Update to May 2009. CAWCR Res. Lett. 2009, 2, 4–11. [Google Scholar]
- Watkins, A.; Trewin, B. Australian climate summary: 2006. Bull. Aust. Meteorol. Oceanogr. Soc. 2007, 20, 10–17. Available online: http://www.bom.gov.au/climate/annual_sum/2006/AnClimSum06.pdf (accessed on 27 September 2024).
- Gallant, A.J.E.; Reeder, M.J.; Risbey, J.S.; Hennessy, K.J. The characteristics of seasonal-scale droughts in Australia, 1911–2009. Int. J. Climatol. 2013, 33, 1658–1672. [Google Scholar] [CrossRef]
- Timbal, B.; Arblaster, J.; Braganza, K.; Fernandez, E.; Hendon, H.; Murphy, B.; Raupach, M.; Rakich, C.; Smith, I.; Whan, K. Understanding the anthropogenic nature of the observed rainfall decline across South Eastern Australia. CAWCR Tech. Rep. 2010, 26, 202. Available online: https://www.cawcr.gov.au/technical-reports/CTR_026.pdf (accessed on 27 September 2024).
- Trewin, B. An exceptionally dry decade in parts of southern and eastern Australia October 1996-September 2006. Spec. Clim. Statement 2006, 9, 1–9. Available online: http://www.bom.gov.au/climate/current/statements/scs9a.pdf (accessed on 27 September 2024).
- Frederiksen, J.S.; Frederiksen, C.S. Twentieth Century Winter Changes in Southern Hemisphere Synoptic Weather Modes. Adv. Meteorol. 2011, 2011, 353829. [Google Scholar] [CrossRef]
- Frederiksen, C.S.; Frederiksen, J.S. A theoretical model of Australian northwest cloudband disturbances and southern hemisphere storm tracks: The role of SST anomalies. J. Atmos. Sci. 1996, 53, 1410–1432. [Google Scholar] [CrossRef]
- Reid, K.J.; Simmonds, I.; Vincent, C.L.; King, A.D. The Australian Northwest Cloudband: Climatology, Mechanisms, and Association with Precipitation. J. Clim. 2019, 32, 6665–6684. [Google Scholar] [CrossRef]
- Troup, A.J. Southern Oscillation. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. [Google Scholar] [CrossRef]
- Nicholls, N. Sea Surface Temperatures and Australian Winter Rainfall. J. Clim. 1989, 2, 965–973. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Mulvaney, R.; Vimeux, F.; Phipps, S.J.; Turner, J.; England, M.H. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 2014, 4, 564–569. [Google Scholar] [CrossRef]
- Kidson, J.W. Interannual Variations in the Southern Hemisphere Circulation. J. Clim. 1988, 1, 1177–1198. [Google Scholar] [CrossRef]
- Arblaster, J.M.; Meehl, G.A. Contributions of external forcings to southern annular mode trends. J. Clim. 2006, 19, 2896–2905. [Google Scholar] [CrossRef]
- Marshall, G.J. Trends in the southern annular mode from observations and reanalyses. J. Clim. 2003, 16, 4134–4143. [Google Scholar] [CrossRef]
- Hendon, H.H.; Thompson, D.W.J.; Wheeler, M.C. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Clim. 2007, 20, 2452–2467. [Google Scholar] [CrossRef]
- Meneghini, B.; Simmonds, I.; Smith, I.N. Association between Australian rainfall and the Southern Annular Mode. Int. J. Climatol. 2007, 27, 109–121. [Google Scholar] [CrossRef]
- Nicholls, N. Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958-2007. Clim. Dynam. 2010, 34, 835–845. [Google Scholar] [CrossRef]
- Timbal, B.; Hendon, H. The role of tropical modes of variability in recent rainfall deficits across the Murray-Darling Basin. Water Resour. Res. 2011, 47, W00G09. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Kiem, A.S. Nature and causes of protracted droughts in southeast Australia: Comparison between the Federation, WWII, and Big Dry droughts. Geophys. Res. Lett. 2009, 36, L22707. [Google Scholar] [CrossRef]
- Raut, B.A.; Jakob, C.; Reeder, M.J. Rainfall Changes over Southwestern Australia and Their Relationship to the Southern Annular Mode and ENSO. J. Clim. 2014, 27, 5801–5814. [Google Scholar] [CrossRef]
- Karoly, D.J. Southern-Hemisphere Circulation Features Associated with Elnino-Southern Oscillation Events. J. Clim. 1989, 2, 1239–1252. [Google Scholar] [CrossRef]
- Risbey, J.S.; Pook, M.J.; McIntosh, P.C.; Ummenhofer, C.C.; Meyers, G. Characteristics and variability of synoptic features associated with cool season rainfall in southeastern Australia. Int. J. Climatol. 2009, 29, 1595–1613. [Google Scholar] [CrossRef]
- Risbey, J.S.; Pook, M.J.; McIntosh, P.C.; Wheeler, M.C.; Hendon, H.H. On the Remote Drivers of Rainfall Variability in Australia. Mon. Weather Rev. 2009, 137, 3233–3253. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Southeast Australia Autumn Rainfall Reduction: A Climate-Change-Induced Poleward Shift of Ocean–Atmosphere Circulation. J. Clim. 2013, 26, 189–205. [Google Scholar] [CrossRef]
- Cai, W.; Purich, A.; Cowan, T.; van Rensch, P.; Weller, E. Did Climate Change–Induced Rainfall Trends Contribute to the Australian Millennium Drought? J. Clim. 2014, 27, 3145–3168. [Google Scholar] [CrossRef]
- Arblaster, J.M.; Meehl, G.A.; Karoly, D.J. Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett. 2011, 38, L02701. [Google Scholar] [CrossRef]
- Pepler, A.S.; Dowdy, A.J.; Hope, P. The differing role of weather systems in southern Australian rainfall between 1979–1996 and 1997–2015. Clim. Dynam. 2021, 56, 2289–2302. [Google Scholar] [CrossRef]
- Dowdy, A.J. Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dynam. 2020, 54, 3041–3052. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H.; Cleland, S.; Meinke, H.; Donald, A. Impacts of the Madden–Julian Oscillation on Australian Rainfall and Circulation. J. Clim. 2009, 22, 1482–1498. [Google Scholar] [CrossRef]
- Osbrough, S.L.; Frederiksen, J.S. Seasonal Cycle of Southern Hemisphere Explosive Growth and Decay of Storms. Atmosphere 2024, 15, 660. [Google Scholar] [CrossRef]
- Bureau of Meteorology. South Western Australia Rain Timeseries. Available online: http://www.bom.gov.au/web01/ncc/www/cli_chg/timeseries/rain/allmonths/swaus/latest.txt (accessed on 25 September 2024).
- Bureau of Meteorology. South Eastern Australia Rain Timeseries. Available online: http://www.bom.gov.au/web01/ncc/www/cli_chg/timeseries/rain/allmonths/seaus/latest.txt (accessed on 25 September 2024).
- Bureau of Meteorology. About the Rainfall Timeseries graphs. Available online: http://www.bom.gov.au/climate/change/about/rain_timeseries.shtml (accessed on 25 September 2024).
- Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Ocean. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Phillips, N.A. Energy Transformations and Meridional Circulations associated with simple Baroclinic Waves in a two-level, Quasi-geostrophic Model. Tellus 1954, 6, 273–286. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V. The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Frederiksen, C.S. Southern-Hemisphere Storm Tracks, Blocking, and Low-Frequency Anomalies in a Primitive Equation Model. J. Atmos. Sci. 1993, 50, 3148–3163. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Frederiksen, C.S. Monsoon Disturbances, Intraseasonal Oscillations, Teleconnection Patterns, Blocking, and Storm Tracks of the Global Atmosphere during January 1979-Linear-Theory. J. Atmos. Sci. 1993, 50, 1349–1372. [Google Scholar] [CrossRef]
- Frederiksen, J.S.; Bell, R.C. North-Atlantic Blocking during January 1979-Linear-Theory. Q. J. R. Meteorol. Soc. 1990, 116, 1289–1313. [Google Scholar] [CrossRef]
- Barbero, R.; Westra, S.; Lenderink, G.; Fowler, H.J. Temperature-extreme precipitation scaling: A two-way causality? Int. J. Climatol. 2018, 38, e1274–e1279. [Google Scholar] [CrossRef]
SWWA | Season | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | JFM | FMA | MAM | AMJ | MJJ | JJA | JAS | ASO | SON | OND | NDJ | DJF |
1949 to 1968 | 17.61 | 27.95 | 51.55 | 88.41 | 115.18 | 115.98 | 91.30 | 67.35 | 45.13 | 32.05 | 18.89 | 16.71 |
% diff | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1975 to 1994 | 19.22 | 25.38 | 45.79 | 73.48 | 96.26 | 97.78 | 84.51 | 63.44 | 45.74 | 30.10 | 22.22 | 18.00 |
% diff | 9.13 | −9.17 | −11.18 | −16.89 | −16.43 | −15.69 | −7.44 | −5.80 | 1.35 | −6.07 | 17.66 | 7.76 |
1997 to 2006 | 19.64 | 25.07 | 46.09 | 68.68 | 87.09 | 95.90 | 86.77 | 69.07 | 43.53 | 26.27 | 20.12 | 15.84 |
% diff | 11.53 | −10.29 | −10.59 | −22.31 | −24.39 | −17.32 | −4.96 | 2.55 | −3.55 | −18.04 | 6.55 | −5.17 |
1997 to 2016 | 18.87 | 24.98 | 45.55 | 66.35 | 85.84 | 92.03 | 86.23 | 66.34 | 45.31 | 28.64 | 22.93 | 17.20 |
% diff | 7.17 | −10.61 | −11.64 | −24.95 | −25.47 | −20.65 | −5.55 | −1.50 | 0.40 | −10.65 | 21.42 | 2.94 |
2001 to 2020 | 18.82 | 24.77 | 42.45 | 62.51 | 82.24 | 89.85 | 84.52 | 64.67 | 44.25 | 28.78 | 22.95 | 18.09 |
% diff | 6.89 | −11.37 | −17.66 | −29.29 | −28.60 | −22.53 | −7.43 | −3.98 | −1.94 | −10.20 | 21.53 | 8.26 |
SEA | Season | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | JFM | FMA | MAM | AMJ | MJJ | JJA | JAS | ASO | SON | OND | NDJ | DJF |
1949 to 1968 | 41.34 | 44.79 | 53.36 | 59.42 | 65.02 | 64.50 | 62.42 | 62.82 | 58.31 | 55.17 | 45.71 | 42.17 |
% diff | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1975 to 1994 | 40.03 | 40.62 | 49.24 | 54.08 | 60.77 | 63.07 | 63.82 | 62.48 | 57.14 | 52.75 | 46.82 | 41.24 |
% diff | −3.16 | −9.31 | −7.72 | −8.99 | −6.53 | −2.22 | 2.25 | −0.55 | −2.02 | −4.39 | 2.41 | −2.21 |
1997 to 2006 | 35.68 | 35.58 | 36.35 | 45.44 | 51.86 | 57.70 | 57.62 | 57.81 | 53.82 | 47.73 | 41.22 | 38.60 |
% diff | −13.68 | −20.56 | −31.88 | −23.53 | −20.23 | −10.55 | −7.69 | −7.98 | −7.71 | −13.49 | −9.84 | −8.47 |
1997 to 2016 | 41.76 | 41.36 | 42.28 | 49.12 | 55.43 | 59.96 | 58.41 | 55.53 | 52.66 | 49.43 | 46.41 | 43.82 |
% diff | 1.02 | −7.66 | −20.76 | −17.33 | −14.75 | −7.03 | −6.41 | −11.62 | −9.70 | −10.41 | 1.52 | 3.90 |
2001 to 2020 | 41.66 | 42.13 | 42.90 | 48.59 | 54.16 | 59.03 | 56.51 | 52.77 | 49.15 | 48.19 | 45.90 | 43.87 |
% diff | 0.77 | −5.95 | −19.61 | −18.23 | −16.70 | −8.47 | −9.46 | −16.01 | −15.72 | −12.65 | 0.40 | 4.03 |
Index | Regions and Variables Defining Indices |
---|---|
SWWA SLP | 27.5° S–35° S, 115° E–125° E |
SWWA hPa | 25° S–35° S, 115° E–117.5° E |
SWWA hPa | 20° S–35° S, 110° E–132.5° E |
SEA SLP | 30° S–40° S, 137.5° E–155° E |
SEA hPa | 32.5° S–40° S, 137.5° E–155° E |
SEA hPa | 20° S–35° S, 132.5° E–155° E |
SAJ | Zonally averaged 20° S–35° S zonal wind u at 700 hPa |
SAM | Zonally averaged 40° S SLP — 65° S SLP |
SOI | Standardised Tahiti—Darwin SLP |
IPO | 50° S–50° N, 100° E–100° W SST |
IOD | (10° N–10° S, 50° E–70° E)—(0°–10° S, 90° E–110° E) SST |
SORD | (52.5° S–60° S, 60° E–110° E)—(20° S–35° S, 90° E–110° E) SST |
Bin | Slow | Moderate | Fast |
---|---|---|---|
Decaying systems | |||
Growing systems |
Bin | Slow and Moderate | Fast |
---|---|---|
Decaying systems | ||
Growing systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osbrough, S.L.; Frederiksen, J.S. Interdecadal Variations in the Seasonal Cycle of Explosive Growth of Southern Hemisphere Storms with Impacts on Southern Australian Rainfall. Atmosphere 2024, 15, 1273. https://doi.org/10.3390/atmos15111273
Osbrough SL, Frederiksen JS. Interdecadal Variations in the Seasonal Cycle of Explosive Growth of Southern Hemisphere Storms with Impacts on Southern Australian Rainfall. Atmosphere. 2024; 15(11):1273. https://doi.org/10.3390/atmos15111273
Chicago/Turabian StyleOsbrough, Stacey L., and Jorgen S. Frederiksen. 2024. "Interdecadal Variations in the Seasonal Cycle of Explosive Growth of Southern Hemisphere Storms with Impacts on Southern Australian Rainfall" Atmosphere 15, no. 11: 1273. https://doi.org/10.3390/atmos15111273
APA StyleOsbrough, S. L., & Frederiksen, J. S. (2024). Interdecadal Variations in the Seasonal Cycle of Explosive Growth of Southern Hemisphere Storms with Impacts on Southern Australian Rainfall. Atmosphere, 15(11), 1273. https://doi.org/10.3390/atmos15111273