Analyzing the Spatiotemporal Changes in Climatic Extremes in Cold and Mountainous Environment: Insights from the Himalayan Mountains of Pakistan
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Region and Datasets
2.2. Precipitation and Temperature Indices
2.3. Analysis of Extreme Precipitation and Temperature Trends
2.4. Spatial Interpolation
3. Results
3.1. Extreme Precipitation Trends
3.2. Extreme Temperature Trends
4. Discussion
5. Conclusions
- A consistent decline in total annual precipitation was noted, with an average decrease of −65.6 mm/decade, representing a drying pattern over the past thirty years (1991–2020).
- Annual average minimum and maximum temperatures exhibited rising trends, rising at rates of 0.20 °C/decade and 0.70 °C/decade, respectively, indicating a warming climate.
- Consecutive wet days (CWDs) and maximum 5-day precipitation (RX5day) demonstrated notable declines, with rates of −4.00 days/decade and −11.80 mm/decade, respectively, indicating a reduction in both the frequency and duration of wet periods.
- The quantity of precipitation on very wet days (R95p) and extremely wet days (R99p) has declined by −19.20 and −13.60 mm/decade, respectively, indicating a decrease in heavy precipitation occurrences.
- The duration of warm spells (WSDI) and the frequency of warm days (TX90p) have increased by 1.5 and 1.4 days/decade, respectively, indicating an increase in the occurrence and length of heatwave events.
- Cold days (TX10p) and cold nights (TN10p) have decreased significantly by 2.90 and 3.40 days/decade, respectively, indicating a trend toward warmer conditions.
- The diurnal temperature range (DTR) and the average temperature of the hottest nights (TXn) have increased by 0.30 °C and 0.10 °C per decade, respectively, indicating greater extremes in temperature variations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhtar, M.; Ahmad, N.; Booij, M.J. The Impact of Climate Change on the Water Resources of Hindukush-Karakorum-Himalaya Region under Different Glacier Coverage Scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s Glaciers Are a Regionally Important Buffer against Drought. Nature 2017, 545, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Rasul, G. Food, Water, and Energy Security in South Asia: A Nexus Perspective from the Hindu Kush Himalayan Region. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef]
- IPCC. Section 4: Near-Term Responses in a Changing Climate. In AR6 Synthesis Report Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 42–66. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.; Hussain, I.; Begum, S.; Akhtar, M.; Wu, X.; Guan, Y.; Zhou, J. Observed Trends and Variability of Temperature and Precipitation and Their Global Teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. Atmosphere 2021, 12, 973. [Google Scholar] [CrossRef]
- Karim, R.; Tan, G.; Ayugi, B.; Shahzaman, M.; Babaousmail, H.; Ngoma, H.; Ongoma, V. Projected Changes in Surface Air Temperature over Pakistan under Bias-Constrained CMIP6 Models. Arab. J. Geosci. 2023, 16, 205. [Google Scholar] [CrossRef]
- Farhan, M.; Moazzam, U.; Rahman, G.; Munawar, S.; Tariq, A.; Safdar, Q.; Lee, B. Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan. Water 2022, 14, 1132. [Google Scholar] [CrossRef]
- ul Hasson, S. Seasonality of Precipitation over Himalayan Watersheds in CORDEX South Asia and Their Driving CMIP5 Experiments. Atmosphere 2016, 7, 123. [Google Scholar] [CrossRef]
- Abbas, S.; Yaseen, M.; Latif, Y.; Waseem, M.; Muhammad, S.; Leta, M.K.; Sher, S.; Imran, M.A.; Adnan, M.; Khan, T.H. Spatiotemporal Analysis of Climatic Extremes over the Upper Indus Basin, Pakistan. Water 2022, 14, 1718. [Google Scholar] [CrossRef]
- Ezaz, G.T.; Zhang, K.; Li, X.; Shalehy, M.H.; Hossain, M.A.; Liu, L. Spatiotemporal Changes of Precipitation Extremes in Bangladesh during 1987–2017 and Their Connections with Climate Changes, Climate Oscillations, and Monsoon Dynamics. Glob. Planet. Change 2022, 208, 103712. [Google Scholar] [CrossRef]
- Song, S.; Bai, J. Increasing Winter Precipitation over Arid Central Asia under Global Warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef]
- Zaman, M.; Ahmad, I.; Usman, M.; Saifullah, M.; Anjum, M.N.; Khan, M.I.; Qamar, M.U. Event-Based Time Distribution Patterns, Return Levels, and Their Trends of Extreme Precipitation across Indus Basin. Water 2020, 12, 3373. [Google Scholar] [CrossRef]
- Waseem, M.; Ajmal, M.; Ahmad, I.; Khan, N.M.; Azam, M.; Sarwar, M.K. Projected Drought Pattern under Climate Change Scenario Using Multivariate Analysis. Arab. J. Geosci. 2021, 14, 544. [Google Scholar] [CrossRef]
- Spies, M. Mixed Manifestations of Climate Change in High Mountains: Insights from a Farming Community in Northern Pakistan. Clim. Dev. 2020, 12, 911–922. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S.; Jia, S. Assessment of Temporal and Spatial Changes of Future Climate in the Jhelum River Basin, Pakistan and India. Weather Clim. Extrem. 2015, 10, 40–55. [Google Scholar] [CrossRef]
- Tahir, A.A.; Adamowski, J.F.; Chevallier, P.; Haq, A.U.; Terzago, S. Comparative Assessment of Spatiotemporal Snow Cover Changes and Hydrological Behavior of the Gilgit, Astore and Hunza River Basins (Hindukush–Karakoram–Himalaya Region, Pakistan). Meteorol. Atmos. Phys. 2016, 128, 793–811. [Google Scholar] [CrossRef]
- Abbas, A.; Ullah, S.; Ullah, W.; Waseem, M.; Dou, X.; Zhao, C.; Karim, A.; Zhu, J.; Hagan, D.F.T.; Bhatti, A.S.; et al. Evaluation and Projection of Precipitation in Pakistan Using the Coupled Model Intercomparison Project Phase 6 Model Simulations. Int. J. Climatol. 2022, 42, 6665–6684. [Google Scholar] [CrossRef]
- Łupikasza, E.B. Seasonal Patterns and Consistency of Extreme Precipitation Trends in Europe, December 1950 to February 2008. Clim. Res. 2017, 72, 217–237. [Google Scholar] [CrossRef]
- Chen, F.; Chen, Y.; Bakhtiyorov, Z.; Zhang, H.; Man, W.; Chen, F. Central Asian River Streamflows Have Not Continued to Increase during the Recent Warming Hiatus. Atmos. Res. 2020, 246, 105124. [Google Scholar] [CrossRef]
- Abbas, A.; Bhatti, A.S.; Ullah, S.; Ullah, W.; Waseem, M.; Zhao, C.; Dou, X.; Ali, G. Projection of Precipitation Extremes over South Asia from CMIP6 GCMs. J. Arid Land 2023, 15, 274–296. [Google Scholar] [CrossRef]
- Al-Sakkaf, A.S.; Zhang, J.; Yao, F.; Hamed, M.M.; Simbi, C.H.; Ahmed, A.; Shahid, S. Assessing Exposure to Climate Extremes over the Arabian Peninsula Using ERA5 Reanalysis Data: Spatial Distribution and Temporal Trends. Atmos. Res. 2024, 300, 107224. [Google Scholar] [CrossRef]
- Hu, W.; Chen, L.; Shen, J.; Yao, J.; He, Q.; Chen, J. Changes in Extreme Precipitation on the Tibetan Plateau and Its Surroundings: Trends, Patterns, and Relationship with Ocean Oscillation Factors. Water 2022, 14, 2509. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Azmat, M.; Liaqat, U.W.; Qamar, M.U.; Awan, U.K. Impacts of Changing Climate and Snow Cover on the Flow Regime of Jhelum River, Western Himalayas. Reg. Environ. Change 2017, 17, 813–825. [Google Scholar] [CrossRef]
- Munawar, S.; Tahir, M.N.; Baig, M.H.A. Twenty-First Century Hydrologic and Climatic Changes over the Scarcely Gauged Jhelum River Basin of Himalayan Region Using SDSM and RCPs. Environ. Sci. Pollut. Res. 2022, 29, 11196–11208. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Performance Evaluation of Reanalysis Precipitation Products in Egypt Using Fuzzy Entropy Time Series Similarity Analysis. Int. J. Climatol. 2021, 41, 5431–5446. [Google Scholar] [CrossRef]
- Odnoletkova, N.; Patzek, T.W. Data-Driven Analysis of Climate Change in Saudi Arabia: Trends in Temperature Extremes and Human Comfort Indicators. J. Appl. Meteorol. Climatol. 2021, 60, 1055–1070. [Google Scholar] [CrossRef]
- Saddique, N.; Khaliq, A.; Bernhofer, C. Trends in Temperature and Precipitation Extremes in Historical (1961–1990) and Projected (2061–2090) Periods in a Data Scarce Mountain Basin, Northern Pakistan. Stoch. Environ. Res. Risk Assess. 2020, 34, 1441–1455. [Google Scholar] [CrossRef]
- Kothawale, D.R.; Revadekar, J.V.; Kumar, K.R. Recent Trends in Pre-Monsoon Daily Temperature Extremes over India. J. Earth Syst. Sci. 2010, 119, 51–65. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World Drought Frequency, Duration, and Severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The Effects of Climate Extremes on Global Agricultural Yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Wu, X.; Yin, J.; Qian, S.; Zhan, J. Changes in Extreme Precipitation across 30 Global River Basins. Water 2020, 12, 1527. [Google Scholar] [CrossRef]
- Ghanim, A.A.J.; Anjum, M.N.; Rasool, G.; Saifullah; Irfan, M.; Rahman, S.; Mursal, S.N.F.; Niazi, U.M. Assessing Spatiotemporal Trends of Total and Extreme Precipitation in a Subtropical Highland Region: A Climate Perspective. PLoS ONE 2023, 18, e0289570. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, D.; Dhaubanjar, S.; Bharati, L. Unpacking Future Climate Extremes and Their Sectoral Implications in Western Nepal. Clim. Change 2021, 168, 8. [Google Scholar] [CrossRef]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef]
- Wood, L.R.; Neumann, K.; Nicholson, K.N.; Bird, B.W.; Dowling, C.B.; Sharma, S. Melting Himalayan Glaciers Threaten Domestic Water Resources in the Mount Everest Region, Nepal. Front. Earth Sci. 2020, 8, 128. [Google Scholar] [CrossRef]
- Chintalapudi, S.; Sharif, H.O.; Xie, H. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products. Water 2014, 6, 1221–1245. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance Evaluation of Latest Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) over the Northern Highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Hamza, A.; Anjum, M.N.; Cheema, M.J.M.; Chen, X.; Afzal, A.; Azam, M.; Shafi, M.K.; Gulakhmadov, A. Assessment of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR Precipitation Products over the Hindu Kush Mountains of Pakistan, South Asia. Remote Sens. 2020, 12, 3871. [Google Scholar] [CrossRef]
- Nadeem, M.U.; Ghanim, A.A.J.; Anjum, M.N.; Shangguan, D.; Rasool, G.; Irfan, M.; Niazi, U.M.; Hassan, S. Multiscale Ground Validation of Satellite and Reanalysis Precipitation Products over Diverse Climatic and Topographic Conditions. Remote Sens. 2022, 14, 4680. [Google Scholar] [CrossRef]
- Chu, P.S.; Chen, Y.R.; Schroeder, T.A. Changes in Precipitation Extremes in the Hawaiian Islands in a Warming Climate. J. Clim. 2010, 23, 4881–4900. [Google Scholar] [CrossRef]
- Junzhi, L.; A-Xing, Z.; Zheng, D. Evaluation of TRMM 3B42 Precipitation Product Using Rain Gauge Data in Meichuan Watershed, Poyang Lake Basin, China. J. Resour. Ecol. 2012, 3, 359–366. [Google Scholar] [CrossRef]
- Kang, B.-S.; Yang, S.-K.; Kang, M.-S. A Comparative Analysis of the Accuracy of Areal Precipitation According to the Rainfall Analysis Method of Mountainous Streams. J. Environ. Sci. Int. 2019, 28, 841–849. [Google Scholar] [CrossRef]
- Ghanim, A.A.J.; Anjum, M.N.; Rasool, G.; Saifullah; Irfan, M.; Alyami, M.; Rahman, S.; Niazi, U.M. Analyzing Extreme Temperature Patterns in Subtropical Highlands Climates: Implications for Disaster Risk Reduction Strategies. Sustainability 2023, 15, 12753. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Tan, M.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Comparative Studies of Spatial Interpolation Methods in Environmental Sciences: Performance and Impact Factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Ghajarnia, N.; Liaghat, A.; Daneshkar Arasteh, P. Comparison and Evaluation of High Resolution Precipitation Estimation Products in Urmia Basin-Iran. Atmos. Res. 2015, 158–159, 50–65. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S. Assessment of Impacts of Climate Change on the Water Resources of the Transboundary Jhelum River Basin of Pakistan and India. Water 2016, 8, 246. [Google Scholar] [CrossRef]
- Yaseen, M.; Ahmad, I.; Guo, J.; Azam, M.I.; Latif, Y. Spatiotemporal Variability in the Hydrometeorological Time-Series over Upper Indus River Basin of Pakistan. Adv. Meteorol. 2020, 2020, 5852760. [Google Scholar] [CrossRef]
- Waseem, M.; Khurshid, T.; Abbas, A.; Ahmad, I.; Javed, Z. Impact of Meteorological Drought on Agriculture Production at Different Scales in Punjab, Pakistan. J. Water Clim. Change 2022, 13, 113–124. [Google Scholar] [CrossRef]
- Waseem, M.; Jaffry, A.H.; Azam, M.; Ahmad, I.; Abbas, A.; Lee, J.E. Spatiotemporal Analysis of Drought and Agriculture Standardized Residual Yield Series Nexuses across Punjab, Pakistan. Water 2022, 14, 496. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Chung, E.S.; Alias, N. Changing Characteristics of Meteorological Droughts in Nigeria during 1901–2010. Atmos. Res. 2019, 223, 60–73. [Google Scholar] [CrossRef]
- Wu, S.; Hu, Z.; Wang, Z.; Cao, S.; Yang, Y.; Qu, X.; Zhao, W. Spatiotemporal Variations in Extreme Precipitation on the Middle and Lower Reaches of the Yangtze River Basin (1970–2018). Quat. Int. 2021, 592, 80–96. [Google Scholar] [CrossRef]
- Aslam, A.Q.; Ahmad, S.R.; Ahmad, I.; Hussain, Y.; Hussain, M.S. Vulnerability and Impact Assessment of Extreme Climatic Event: A Case Study of Southern Punjab, Pakistan. Sci. Total Environ. 2017, 580, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Saifullah, M.; Adnan, M.; Zaman, M.; Wałęga, A.; Liu, S.; Khan, M.I.; Gagnon, A.S.; Muhammad, S. Hydrological Response of the Kunhar River Basin in Pakistan to Climate Change and Anthropogenic Impacts on Runoff Characteristics. Water 2021, 13, 3163. [Google Scholar] [CrossRef]
- Xu, D.; Liu, D.; Yan, Z.; Ren, S.; Xu, Q. Spatiotemporal Variation Characteristics of Precipitation in the Huaihe River Basin, China, as a Result of Climate Change. Water 2023, 15, 181. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Hagan, D.F.T.; Nooni, I.K.; Lou, D.; Ullah, I. Trend in Extreme Precipitation Indices Based on Long Term in Situ Precipitation Records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef]
- Hidalgo García, D.; Arco Díaz, J.; Martín Martín, A.; Gómez Cobos, E. Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing. Sustainability 2022, 14, 12262. [Google Scholar] [CrossRef]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional Changes in Extreme Temperature Records over Pakistan and Their Relation to Pacific Variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Syed, A.; Liu, X.; Moniruzzaman, M.; Rousta, I.; Syed, W.; Zhang, J.; Olafsson, H. Assessment of Climate Variability among Seasonal Trends Using In Situ Measurements: A Case Study of Punjab, Pakistan. Atmosphere 2021, 12, 939. [Google Scholar] [CrossRef]
Sr. No. | Index No. | Weather Station | Long. (dd) | Lat. (dd) | Elevation (m) | Temperature (°C) | Precipitation (mm) |
---|---|---|---|---|---|---|---|
1 | 41520 | Astore | 74.91 | 35.36 | 2170 | 10.10 | 459.71 |
2 | Nill | Bagh | 74.10 | 33.79 | 2200 | 20.70 | 1165.59 |
3 | 41536 | Balakot | 73.36 | 34.38 | 996 | 18.80 | 1475.03 |
4 | 41518 | Bunji | 74.63 | 35.67 | 1470 | 17.70 | 160.73 |
5 | 41519 | Chilas | 74.10 | 35.42 | 1251 | 20.40 | 196.82 |
6 | 43533 | Garhi Dupatta | 73.60 | 34.20 | 814 | 19.70 | 1338.98 |
7 | 41516 | Gilgit | 74.33 | 35.92 | 1460 | 16.00 | 145.60 |
8 | Nill | Islamabad | 73.09 | 33.73 | 569 | 21.80 | 1262.51 |
9 | 41598 | Jhelum | 73.37 | 32.94 | 287 | 23.90 | 862.13 |
10 | 41535 | Kakul | 73.25 | 34.18 | 1309 | 16.90 | 1312.16 |
11 | 43563 | Kotli | 73.89 | 33.52 | 614 | 21.90 | 1183.75 |
12 | Nill | Murree | 73.40 | 33.91 | 2127 | 13.40 | 1694.61 |
13 | 43532 | Muzaffarabad | 73.50 | 34.40 | 838 | 20.50 | 1377.73 |
14 | Nill | Rawalpindi | 73.05 | 33.58 | 540 | 21.70 | 1248.58 |
15 | 41523 | Saidu-Sharif | 72.36 | 34.81 | 970 | 26.30 | 1036.64 |
16 | 41517 | Skardu | 75.55 | 35.35 | 2317 | 11.90 | 228.13 |
Sr. No. | Category | Precipitation Indices | Temperature Indices |
---|---|---|---|
1 | Percentile-based indices (precipitation indices in mm and temperature indices in days) | R95p R99p | TN10p TN90p TX10p TX90p |
2 | Absolute indices (precipitation indices in mm and temperature indices in °C) | R10 R20 R25 RX1day RX5day | TNn TNx TXn TXx TXmean TNmean |
3 | Duration-based indices (both indices in days) | CDD CWDs | CSDI WSDI |
Sr. | Stations | CDD | CWDs | PRCPTOT | R10 | R20 | R25 | R95P | R99P | RX1Day | RX5Day |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Astore | 1.10 | 0.00 | −7.10 | −0.25 | −0.08 | −0.09 | −2.69 | 0.00 | −0.32 | −1.07 |
2 | Bagh | 0.00 | −0.05 | −19.33 | −0.65 | −0.38 | −0.38 | −11.54 | 0.00 | −1.85 | −3.61 |
3 | BalaKot | 0.12 | 0.00 | −8.93 | −0.11 | −0.12 | −0.14 | −9.24 | −3.00 | −1.89 | −2.68 |
4 | Bunji | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.79 | 0.00 | −0.14 | −0.41 |
5 | Chilas | 0.24 | −0.03 | −1.71 | −0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.27 |
6 | Garhi Dupatta | 0.53 | −0.08 | −7.34 | −0.17 | 0.00 | 0.00 | −1.61 | 0.00 | −0.33 | −1.42 |
7 | Gilgit | 0.00 | 0.01 | 1.46 | 0.05 | 0.00 | 0.00 | 0.23 | 0.01 | 0.15 | 0.00 |
8 | Islamabad | 0.05 | −0.04 | 1.72 | 0.10 | −0.12 | 0.00 | −2.58 | 0.00 | 0.09 | −0.35 |
9 | Jhelum | 0.26 | 0.00 | −10.69 | −0.11 | 0.05 | −0.13 | −5.56 | 0.00 | −0.65 | −2.34 |
10 | Kakul | 0.29 | 0.00 | −3.43 | −0.19 | −0.17 | 0.00 | −9.24 | −1.70 | −0.34 | −0.63 |
11 | Kotli | 0.50 | −0.05 | 2.43 | −0.05 | 0.08 | 0.00 | −4.35 | 0.00 | 0.88 | 0.10 |
12 | M. Abad | 0.50 | −0.11 | 0.18 | 0.15 | 0.00 | 0.13 | 2.17 | 0.00 | 0.23 | −1.35 |
13 | Murree | 0.15 | −0.05 | −19.63 | −0.55 | 0.20 | −0.33 | 3.13 | −6.74 | −1.88 | −3.27 |
14 | Rawalpindi | 0.10 | −0.04 | 1.16 | 0.06 | 0.00 | 0.00 | 8.67 | 0.00 | 0.00 | −1.41 |
15 | Saidu Sharif | 0.00 | 0.00 | −8.76 | −0.25 | 0.00 | −0.21 | 0.00 | 0.00 | −0.35 | −2.19 |
16 | Skardo | 1.00 | −0.05 | −3.14 | 0.00 | 0.00 | 0.00 | −2.15 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, U.; Anjum, M.N.; Hussain, S.; Sultan, M.; Rasool, G.; Riaz, M.Z.B.; Shoaib, M.; Asif, M. Analyzing the Spatiotemporal Changes in Climatic Extremes in Cold and Mountainous Environment: Insights from the Himalayan Mountains of Pakistan. Atmosphere 2024, 15, 1221. https://doi.org/10.3390/atmos15101221
Zafar U, Anjum MN, Hussain S, Sultan M, Rasool G, Riaz MZB, Shoaib M, Asif M. Analyzing the Spatiotemporal Changes in Climatic Extremes in Cold and Mountainous Environment: Insights from the Himalayan Mountains of Pakistan. Atmosphere. 2024; 15(10):1221. https://doi.org/10.3390/atmos15101221
Chicago/Turabian StyleZafar, Usama, Muhammad Naveed Anjum, Saddam Hussain, Muhammad Sultan, Ghulam Rasool, Muhammad Zain Bin Riaz, Muhammad Shoaib, and Muhammad Asif. 2024. "Analyzing the Spatiotemporal Changes in Climatic Extremes in Cold and Mountainous Environment: Insights from the Himalayan Mountains of Pakistan" Atmosphere 15, no. 10: 1221. https://doi.org/10.3390/atmos15101221
APA StyleZafar, U., Anjum, M. N., Hussain, S., Sultan, M., Rasool, G., Riaz, M. Z. B., Shoaib, M., & Asif, M. (2024). Analyzing the Spatiotemporal Changes in Climatic Extremes in Cold and Mountainous Environment: Insights from the Himalayan Mountains of Pakistan. Atmosphere, 15(10), 1221. https://doi.org/10.3390/atmos15101221