A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Analyses
3. Results and Discussion
3.1. Precipitation and Flood
3.2. Large-Scale Circulation
3.3. Synoptic Scale
3.4. Mesoscale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regoto, P.; Dereczynski, C.; Chou, S.C.; Bazzanela, A.C. Observed changes in air temperature and precipitation extremes over Brazil. Int. J. Climatol. 2021, 41, 5125–5142. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Souza, C.A.D.; Baldoni, T.C.; Silva, P.L.L.D.S.; Ferreira, G.W.S. Future projections of extreme precipitation climate indices over South America based on CORDEX-CORE multimodel ensemble. Atmosphere 2022, 13, 1463. [Google Scholar] [CrossRef]
- Faria, L.F.; Reboita, M.S.; Mattos, E.V.; Carvalho, V.S.B.; Martins Ribeiro, J.G.; Capucin, B.C.; Drumond, A.; Paes dos Santos, A.P. Synoptic and mesoscale analysis of a severe weather event in Southern Brazil at the end of June 2020. Atmosphere 2023, 14, 486. [Google Scholar] [CrossRef]
- Alcântara, E.; Marengo, J.A.; Mantovani, J.; Londe, L.R.; San, R.L.Y.; Park, E.; Lin, Y.N.; Wang, J.; Mendes, T.; Cunha, A.; et al. Deadly disasters in southeastern South America: Flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro. Nat. Hazards Earth Syst. Sci. 2023, 23, 1157–1175. [Google Scholar] [CrossRef]
- Bartolomei, F.R.; Ribeiro, J.G.M.; Reboita, M.S. Eventos Extremos de Precipitação no Sudeste do Brasil: Verão 2021/2022. Rev. Bras. Geo. Fis. 2023, 16, 2658–2676. [Google Scholar] [CrossRef]
- Oda, P.S.S.; Teixeira, D.L.S.; Pinto, T.A.C.; da Silva, F.P.; Riondet-Costa, D.R.T.; Mattos, E.V.; de Souza, D.O.; Bartolomei, F.; Reboita, M.S.; Santos, A.P.P.D. Disasters in Petrópolis, Brazil: Political, urban planning, and geometeorological factors that contributed to the event on February 15, 2022. Urban Clim. 2024, 4, 101849. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Seluchi, M.E.; Camarinha, P.I.; Dolif, G.; Sperling, V.B.; Alcântara, E.H.; Ramos, A.M.; Andrade, M.M.; Stabile, R.A.; et al. Heavy rains and hydrogeological disasters on February 18th–19th, 2023, in the city of São Sebastião, São Paulo, Brazil: From meteorological causes to early warnings. Nat. Hazards 2024, 120, 7997–8024. [Google Scholar] [CrossRef]
- Bartolomei, F.R.; Reboita, M.S.; da Rocha, R.P. Ciclones extratropicais causadores de eventos extremos no sul do Brasil no inverno de 2023. Terrae Didatica 2024, 20, e024003. [Google Scholar] [CrossRef]
- Mantovani, J.; Alcântara, E.; Pampuch, L.A.; Baião, C.F.P.; Park, E.; Custódio, M.S.; Gozzo, L.F.; Bortolozo, C.A. Assessing flood risks in the Taquari-Antas Basin (Southeast Brazil) during the September 2023 extreme rainfall surge. Nat. Hazards 2024, 1, 9. [Google Scholar] [CrossRef]
- United Nations. Brazil Floods: UNHCR—WMO. Available online: https://www.unognewsroom.org/story/en/2183/brazil-floods-unhcr-wmo (accessed on 27 August 2024).
- British Broadcasting Corporation (BBC). Foi Assustador: Carta de 83 Anos Detalha Estragos da Grande Enchente de 1941 no Rio Grande do Sul. Available online: https://www.bbc.com/portuguese/articles/c2898rxg1j9o#:~:text=Na%20enchente%20de%20maio%20de,dias%20de%20chuvas%20naquele%20m%C3%AAs (accessed on 26 May 2024).
- Agência Nacional de Águas e Saneamento Básico (ANA). Cais Mauá C6. Available online: https://app.powerbi.com/view?r=eyJrIjoiZTRjZDlmYjgtNzAzMS00ZTFmLTlmZDAtNzEwNjM0MDU0NTJhIiwidCI6ImUwYmI0MDEyLTgxMGItNDY5YS04YjRkLTY2N2ZjZDFiYWY4OCJ9 (accessed on 31 May 2024).
- Defesa Civil. Defesa Civil Atualiza Balanço das Enchentes no RS-9/8. Available online: https://defesacivil.rs.gov.br/defesa-civil-atualiza-balanco-das-enchentes-no-rs-10-7-66b67813ba21f (accessed on 10 September 2024).
- Blunden, J.; Boyer, T. State of the climate in 2023. Bull. Amer. Meteor. Soc. 2024, 105, S1–S484. [Google Scholar] [CrossRef]
- United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Annual Report 2023. Available online: https://reliefweb.int/attachments/03b7230c-6890-478c-bacf-2f627caa908f/OCHA_Annual_Report_2023.pdf?_gl=1*zwywdo*_ga*MTcyODY2MDY0OS4xNzI0NzIzMjYy*_ga_E60ZNX2F68*MTcyNDgzMzU5My4zLjEuMTcyNDgzMzYyNi4yNy4wLjA (accessed on 1 June 2024).
- Suertegaray, D.M.A.; Fujimoto, N.S.V.M. Morfogênese do Relevo do Estado do Rio Grande do Sul. In Rio Grande do Sul: Paisagens e Territórios em Transformação, 2nd ed.; Verdum, R., Basso, L.A., Suertegaray, D.M.A., Eds.; Editora da UFRGS: Porto Alegre, Brasil, 2012; pp. 11–26. Available online: https://lume.ufrgs.br/bitstream/handle/10183/218530/000869820.pdf?sequence=1&isAllowed=y (accessed on 25 May 2024).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.W.S.; Reboita, M.S. A new look into the South America precipitation regimes: Observation and forecast. Atmosphere 2022, 13, 873. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Normais Climatológicas do Brasil. Available online: https://portal.inmet.gov.br/normais (accessed on 31 August 2024).
- G1. Resgate do Cavalo Caramelo: Entenda Como Animal foi Retirado de Telhado no RS. Available online: https://g1.globo.com/rs/rio-grande-do-sul/noticia/2024/05/09/resgate-do-cavalo-caramelo-entenda-como-animal-foi-retirado-de-cima-do-telhado-no-rs.ghtml (accessed on 31 May 2024).
- PREVOTS. Available online: www.prevots.org/ (accessed on 31 August 2024).
- Ribeiro, B.; Schild, G.; Santos, L.; Nascimento, E.L.; Lopes, M.; Goede, V.; dos Santos, L.D.O.; Costa, I.; Ferreira, V.; Oliveira, M.; et al. The Brazilian Severe Storm Reports Database: Methodology and a Preliminary Climatology. In Proceedings of the Climatologies of Severe Storms and Their Environments, Santa Fe, NM, USA, 27 October 2022; American Meteorological Society: Boston, MA, USA, 2022. Available online: https://ams.confex.com/ams/30SLS/meetingapp.cgi/Paper/407158 (accessed on 2 September 2024).
- Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN). Mapa Interativo da Rede Observacional Para Monitoramento de Risco de Desastres Naturais do Cemaden. Available online: https://mapainterativo.cemaden.gov.br/ (accessed on 1 June 2024).
- Correio Braziliense. Após Inundações, Infraestrutura do Rio Grande do Sul Está Comprometida. Available online: https://www.correiobraziliense.com.br/brasil/2024/05/6850774-apos-inundacoes-infraestrutura-do-rio-grande-do-sul-esta-comprometida.html (accessed on 31 May 2024).
- Agência Brasil. Mais de 78% dos Municípios Gaúchos Foram Impactados Pelas Chuvas. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2024-05/mais-de-78-dos-municipios-gauchos-foram-impactados-pelas-chuvas (accessed on 29 May 2024).
- Jovem Pan. Sobe para 83 o Número de Mortos no Rio Grande do Sul. Available online: https://jovempan.com.br/noticias/brasil/sobe-para-83-o-numero-de-mortos-no-rio-grande-do-sul.html (accessed on 29 May 2024).
- O Globo. Tragédia no RS e até Resgate de Cavalo Caramelo Viram Pano de Fundo para Polarização Política. Available online: https://oglobo.globo.com/brasil/sos-rio-grande-do-sul/noticia/2024/05/09/tragedia-no-rs-e-ate-resgate-de-cavalo-caramelo-viram-pano-de-fundo-para-polarizacao-politica.ghtml (accessed on 29 May 2024).
- UOL. Vídeo Mostra Passagem de Tornado no Interior do Rio Grande do Sul; Veja. Available online: https://noticias.uol.com.br/videos/2024/04/28/video-mostra-passagem-de-tornado-no-interior-do-rio-grande-do-sul-veja.htm (accessed on 29 August 2024).
- UOL. Rio Grande do Sul: Tornado Atinge Gentil (RS) e Destelha Casas; Veja Vídeo. Available online: https://noticias.uol.com.br/videos/2024/05/11/rio-grande-do-sul-tornado-atinge-gentil-rs-e-destelha-casas-veja-video.htm (accessed on 29 August 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). OI SST V2 High Resolution Dataset. Available online: https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html (accessed on 1 June 2024).
- National Oceanic and Atmospheric Administration (NOAA). Climate Prediction Center (CPC) Daily Blended Outgoing Longwave Radiation (OLR)-2.5 Degree. Available online: https://psl.noaa.gov/data/gridded/data.cpc_blended_olr-2.5deg.html (accessed on 1 June 2024).
- Souza, C.A.; Reboita, M.S. Ferramenta para o monitoramento dos padrões de teleconexão na América do Sul. Terræ Didat. 2021, 17, e021009. [Google Scholar] [CrossRef]
- Índices de Teleconexões. Available online: https://meteorologia.unifei.edu.br/teleconexoes/ (accessed on 1 June 2024).
- Geostationary Operational Environmental Satellite (GOES-16) Satellite. Available online: https://ftp.cptec.inpe.br/goes/goes16/retangular/ch13/ (accessed on 1 June 2024).
- Observing Systems Capability Analysis and Review Tool (OSCAR). Available online: https://space.oscar.wmo.int/satellites/view/goes_16 (accessed on 30 June 2024).
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125–126, 34–49. [Google Scholar] [CrossRef]
- GOES-R Geostationary Lightning Mapper (GLM)–Amazon AWS. Available online: https://noaa-goes16.s3.amazonaws.com/index.html#GLM-L2-LCFA/ (accessed on 30 June 2024).
- GOES-R Geostationary Lightning Mapper (GLM) Acumulado. Available online: http://ftp.cptec.inpe.br/goes/goes16/goes16_web/glm_acumulado_nc/ (accessed on 30 June 2024).
- Rozante, J.R.; Moreira, D.S.; Gonçalves, L.G.G.; Vila, D.A. Combining TRMM and surface observations of precipitation: Technique and validation over South America. Weather Forecast. 2010, 25, 885–894. [Google Scholar] [CrossRef]
- MERGE–GPM. Available online: https://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/ (accessed on 30 June 2024).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- CHIRPS Daily: Climate Hazards Center InfraRed Precipitation with Station Data (Version 2.0 Final). Available online: https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY (accessed on 30 June 2024).
- Soil Moisture Active-Passive (SMAP). Available online: https://smap.jpl.nasa.gov/ (accessed on 30 June 2024).
- SPL4SMGP.007 SMAP L4 Global 3-Hourly 9-km Surface and Root Zone Soil Moisture. Available online: https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007 (accessed on 30 June 2024).
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992; 520p. [Google Scholar]
- Kidder, S.Q.; Haar, T.H.V. Satellite Meteorology: An Introduction; Academic Press: Cambridge, MA, USA, 1995; 466p. [Google Scholar]
- de Freitas, A.A.; Oda, P.S.S.; Teixeira, D.L.S.; Silva, P.N.; Mattos, E.V.; Bastos, I.R.P.; Nery, T.D.; Metodiev, D.; Santos, A.P.P.D.; Gonçalves, W.A. Meteorological conditions and social impacts associated with natural disaster landslides in the Baixada Santista region from March 2nd–3rd, 2020. Urban Clim. 2022, 42, 101110. [Google Scholar] [CrossRef]
- Reynolds, S.E.; Brook, M.; Gourley, M.F. Thunderstorm charge separation. J. Atmos. Sci. 1957, 14, 426–436. [Google Scholar] [CrossRef]
- Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Eventos Extremos de Maio de 2024 no Brasil. Available online: https://portal.inmet.gov.br/uploads/notastecnicas/EventosExtremos-Brasil-Maio-2024.pdf (accessed on 1 September 2024).
- Oceanic Niño Index (ONI). Available online: https://meteorologia.unifei.edu.br/teleconexoes/indice?id=oni (accessed on 30 June 2024).
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; Ferreira, G.W.S.; Rehbein, A.; Drumond, A.; da Rocha, R.P.; de Souza, C.A. Impacts of teleconnection patterns on South America climate. Ann. N. Y. Acad. Sci. 2021, 1504, 116–153. [Google Scholar] [CrossRef] [PubMed]
- Taschetto, A.S.; Ambrizzi, T. Can Indian Ocean SST anomalies influence South American rainfall? Clim. Dyn. 2012, 38, 1615–1628. [Google Scholar] [CrossRef]
- Agência Brasil. Chuvas na África Deixam pelo Menos 473 Mortos e 1,6 Milhão de Afetados. Available online: https://agenciabrasil.ebc.com.br/internacional/noticia/2024-05/chuvas-na-africa-deixam-pelo-menos-473-mortos-e-16-milhao-de-afetados#:~:text=Pelo%20menos%20473%20pessoas%20morreram,das%20Na%C3%A7%C3%B5es%20Unidas%20(ONU) (accessed on 4 June 2024).
- National Oceanic and Atmospheric Administration (NOAA). Madden-Julian Oscillation: Recent Evolution, Current Status and Predictions. Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjoupdate.pdf (accessed on 26 May 2024).
- Karoly, D.J. Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 1989, 2, 1239–1252. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.-C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Hoskins, B.J. Stationary rossby-wave propagation in a baroclinic atmosphere. Q. J. R. Meteorol. Soc. 1997, 123, 919–928. [Google Scholar] [CrossRef]
- Nascimento, E.L.; Ambrizzi, T. The influence of atmospheric blocking on the rossby wave propagation in the southern hemisphere winter flows. J. Meteorol. Soc. Jpn. 2002, 80, 139–159. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Li, Y.; Jin, F.-F.; Zheng, J. Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Clim. Dyn. 2019, 52, 3203–3221. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; da Rocha, R.P. The South Atlantic subtropical anticyclone: Present and future climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Silva Dias, M.A.F.D. Sistemas de mesoescala e previsão de tempo a curto prazo. Rev. Bras. Meteorol. 1987, 2, 133–150. [Google Scholar]
- Martinez, D.M.; Solman, S.A. Synoptic patterns associated with extreme precipitation events over southeastern South America during spring and summer seasons. Int. J. Climatol. 2022, 42, 10387–10406. [Google Scholar] [CrossRef]
- Rozante, J.R.; Gutierrez, E.R.; Fernandes, A.A.; Vila, D.A. Performance of precipitation products obtained from combinations of satellite and surface observations. Int. J. Remote Sens. 2020, 41, 7585–7604. [Google Scholar] [CrossRef]
- Cassalho, F.; Rennó, C.D.; Reis, J.B.C.; Silva, B.C. Hydrologic validation of MERGE precipitation products over anthropogenic watersheds. Water 2020, 12, 1268. [Google Scholar] [CrossRef]
- Silva, E.H.L.; Silva, F.D.S.; Silva Junior, R.S.; Pinto, D.D.C.; Costa, R.L.; Gomes, H.B.; Júnior, J.B.C.; de Freitas, I.G.F.; Herdies, D.L. Performance assessment of different precipitation databases (gridded analyses and reanalyses) for the new Brazilian agricultural frontier: SEALBA. Water 2022, 14, 1473. [Google Scholar] [CrossRef]
- Durkee, J.D.; Mote, T.L. A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol. 2010, 30, 418–431. [Google Scholar] [CrossRef]
- Durkee, J.D.; Mote, T.L.; Shepherd, J.M. The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Clim. 2009, 22, 4590–4605. [Google Scholar] [CrossRef]
- Silva Dias, M.A.F. An increase in the number of tornado reports in Brazil. Wea. Clim. Soc. 2011, 3, 209–217. [Google Scholar] [CrossRef]
- Nascimento, E.D.L.; Held, G.; Gomes, A.M. A multiple-vortex tornado in southeastern Brazil. Mon. Weather Rev. 2014, 142, 3017–3037. [Google Scholar] [CrossRef]
- Ferreira, V.; Goede, V.; Nascimento, E.L. An environmental and polarimetric study of the 19 November 2015 supercell and multiple-vortex tornado in Marechal Cândido Rondon, southern Brazil. Meteor. Atmos. Phys. 2022, 134, 82. [Google Scholar] [CrossRef]
- Oda, P.S.S.; Enoré, D.P.; Mattos, E.V.; Gonçalves, W.A.; Albrecht, R.I. An initial assessment of the distribution of total Flash Rate Density (FRD) in Brazil from GOES-16 Geostationary Lightning Mapper (GLM) observations. Atmos. Res. 2022, 270, 106081. [Google Scholar] [CrossRef]
- Rinehart, R.E. Radar for Meteorologists, 5th ed.; Rinehart Publications: New York, NY, USA, 2010; 482p. [Google Scholar]
- Pereira, R.G.; Ribeiro, J.G.M.; Mattos, E.V.; Reboita, M.S. Analysis of a hailstorm in the south of Minas Gerais state on October 13, 2020. Meteorol. Atmos. Phys. 2024, 136, 21. [Google Scholar] [CrossRef]
Station Number | City | Station Name | Latitude | Longitude | Precipitation (mm) |
---|---|---|---|---|---|
1 | Segredo | Prefeitura | −29.3399 | −52.982 | 812.6 |
2 | Fontoura Xavier | Centro | −28.9848 | −52.3444 | 778 |
3 | Lagoa Bonita do Sul | Centro | −29.49 | −53.013 | 749.2 |
4 | Caxias do Sul | Forqueta | −29.214 | −51.282 | 679.6 |
5 | Candelária | Fábrica de Injetados | −29.6629 | −52.7873 | 666.8 |
6 | Nova Palma | Centro | −29.47 | −53.465 | 636.8 |
7 | Faxinal do Soturno | Centro | −29.5809 | −53.4467 | 634.8 |
8 | Soledade | Centro | −28.8302 | −52.5104 | 624.8 |
9 | Alto Feliz | Alto Feliz | −29.382 | −51.3176 | 617 |
10 | Lajeado | Moinhos D’Água | −29.452 | −52.003 | 589.4 |
11 | Arroio do Tigre | Taboazinho | −29.3345 | −53.0845 | 587.8 |
12 | Santa Maria | Lorenzi | −29.727 | −53.807 | 553.4 |
13 | Cachoeira do Sul | Comunidade Três Vendas | −29.8908 | −53.0043 | 546.4 |
14 | Bom Princípio | Centro | −29.489 | −51.356 | 541.2 |
15 | São Francisco de Paula | Centro | −29.4417 | −50.5828 | 532 |
16 | Nova Petrópolis | Centro | −29.3756 | −51.1144 | 526.2 |
17 | Teutônia | Teutônia | −29.4524 | −51.8097 | 502 |
18 | Três Coroas | Rio Paranhana | −29.5157 | −50.7742 | 486 |
19 | Cruzeiro do Sul | Secretaria da Agricultura | −29.5132 | −51.9848 | 473.2 |
20 | Venâncio Aires | Centro Linha Brasil | −29.5371 | −52.3016 | 466.8 |
21 | Estrela | Indústrias | −29.4824 | −51.9687 | 442.6 |
22 | Viamão | Vila Augusta | −30.048 | −51.084 | 427 |
23 | Itati | Restaurante Mirador | −29.3549 | −50.1719 | 424.93 |
24 | Canoas | Marechal Rondon | −29.924 | −51.17 | 423.4 |
25 | Gravataí | Morungava | −29.8816 | −50.93 | 422 |
26 | Serafina Corrêa | Centro | −28.7102 | −51.9298 | 419 |
27 | Sapucaia do Sul | Paraíso | −29.833 | −51.15 | 415 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reboita, M.S.; Mattos, E.V.; Capucin, B.C.; Souza, D.O.d.; Ferreira, G.W.d.S. A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024. Atmosphere 2024, 15, 1123. https://doi.org/10.3390/atmos15091123
Reboita MS, Mattos EV, Capucin BC, Souza DOd, Ferreira GWdS. A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024. Atmosphere. 2024; 15(9):1123. https://doi.org/10.3390/atmos15091123
Chicago/Turabian StyleReboita, Michelle Simões, Enrique Vieira Mattos, Bruno César Capucin, Diego Oliveira de Souza, and Glauber Willian de Souza Ferreira. 2024. "A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024" Atmosphere 15, no. 9: 1123. https://doi.org/10.3390/atmos15091123
APA StyleReboita, M. S., Mattos, E. V., Capucin, B. C., Souza, D. O. d., & Ferreira, G. W. d. S. (2024). A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024. Atmosphere, 15(9), 1123. https://doi.org/10.3390/atmos15091123