Application of an Empirical Model to Improve Maximum Value Predictions in CFD-RANS: Insights from Four Scientific Domains
Abstract
:1. Introduction
2. Methodology
- 1.
- Empirical Model Formulation:
- 2.
- Calculation of the Integral Time Scale:
- 3.
- Selection of Parameters b and ν:
- 4.
- Application to Scientific Fields:
- 5.
- Validation of the Model:
- 6.
- Implementation and Computation:
- 6.1.
- MATLAB Code Implementation:
Data Collection
3. Description of the Selected Scientific Fields
3.1. Hydrogen Combustion in Renewable Energy Systems
The Selected Hydrogen Experiments
3.2. Urban Microclimate Effects on Cultural Heritage
3.3. Shipping Emissions
The Measurement Campaign
3.4. Road Vehicle Emissions
The Measurement Campaign
4. Results and Discussion
4.1. Hydrogen Combustion in Renewable Energy Systems
4.2. Urban Microclimate Effects on Cultural Heritage
4.3. Shipping Emissions
4.4. Road Vehicle Emissions
4.4.1. Calibration of the Empirical Model
4.4.2. Validation of the Empirical Model
5. Conclusions
- Hydrogen Combustion in Renewable Energy Systems: The empirical model was effectively validated against LES data for hydrogen in confined spaces, showing a success rate of 99.52%. The model’s ability to predict maximum hydrogen concentrations underlines its potential application in safety and reliability analysis in renewable energy contexts.
- Urban Microclimate Effects on Cultural Heritage: The model was applied to predict maximum wind speeds in urban environments, using LES data as a reference. The results confirm the robustness of the model, with a 100% success rate in predicting maximum wind speeds, highlighting its utility in preserving cultural heritage under extreme weather conditions.
- Shipping Emissions: The model accurately predicted individual exposure to shipping emissions, particularly for pollutants like CO2 and O3. This suggests the model’s applicability in urban air quality management, particularly in port cities.
- Road Vehicle Emissions: The model demonstrated strong predictive performance for road vehicle emissions, with all pollutants closely aligning with measured values. The study also revealed a linear dependence of parameter ‘b’ on vehicle speed, offering new insights for further research.
Discussion on LES Data and Model Agreement
6. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Pope, S.B. Simple models of turbulent flows. Phys. Fluids 2011, 23, 011301. [Google Scholar] [CrossRef]
- Wilson, J.; Smith, T. Stochastic vs. Deterministic Approaches in Turbulence Prediction. Phys. Fluids 2021. [Google Scholar]
- Frank, J.; Sawford, B. Deterministic and Stochastic Modeling in Turbulence Prediction. Appl. Math. Model. 2023. [Google Scholar]
- Javanroodi, K.; Nik, V.M.; Giometto, M.G.; Scartezzini, J.-L. Combining computational fluid dynamics and neural networks to characterize microclimate extremes: Learning the complex interactions between meso-climate and urban morphology. Sci. Total Environ. 2022, 829, 154223. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.; Karri, V.; Madsen, O. Prediction of hydrogen safety parameters using intelligent techniques. Int. J. Hydrog. Energy 2009, 33, 431–442. [Google Scholar] [CrossRef]
- Bartzis, J.G.; Sfetsos, A.; Andronopoulos, S. On the individual exposure from airborne hazardous releases: The effect of atmospheric turbulence. J. Hazard. Mater. 2008, 150, 76–82. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Andronopoulos, S.; Tolias, I.; Venetsanos, A. Prediction of the upper tail of concentration distributions of a continuous point source release in urban environments. Environ. Fluid Mech. 2016, 16, 899–921. [Google Scholar] [CrossRef]
- Blocken, B.; Janssen, W.; van Hooff, T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the eindhoven university campus. Environ. Model. Softw. 2012, 30, 15–34. [Google Scholar] [CrossRef]
- Holmes, J.D. Wind Loading of Structures; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Caciolo, M.; Stabat, P.; Marchio, D. Numerical simulation of single-sided ventilation using RANS and LES and comparison with full-scale experiments. Build. Environ. 2012, 50, 202–213. [Google Scholar] [CrossRef]
- Gryning, S.-E.; Holtslag, A.A.M.; Irwin, J.S.; Sivertsen, B. Applied dispersion modeling based on meteorological data. Bound.-Layer Meteorol. 1987, 21, 79–98. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; 771p, ISBN 0521598869/0521591252. [Google Scholar]
- Makar, P.A.; Stroud, C.; Akingunola, A.; Zhang, J.H.; Ren, S.Z.; Cheung, P.; Zheng, Q. Vehicle-induced turbulence and atmospheric pollution. Atmos. Chem. Phys. 2021, 21, 12291–12316. [Google Scholar] [CrossRef]
- Davidson, L. Large eddy simulations: How to evaluate resolution. Int. J. Heat Fluid Flow 2009, 30, 1016–1025. [Google Scholar] [CrossRef]
- Box, G.E.P.; Draper, N.R. Empirical Model-Building and Response Surfaces; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Introduction to aerosol characterization. Aerosol measurement: Principles, techniques, and applications. 2011. [Google Scholar] [CrossRef]
- Stępie´n, Z. A comprehensive overview of hydrogen-fueled internal combustion engines: Achievements and future challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, C.; Li, Y. Research and development of hydrogen energy safety. Emerg. Manag. Sci. Technol. 2022, 2, 3. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sust. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 2006. [Google Scholar]
- Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; et al. A review of operational, regional-scale, chemical weather forecasting models. Atmos. Chem. Phys. 2012, 12, 1–87. [Google Scholar] [CrossRef]
- Koutsourakis, N.; Tolias, I.C.; Venetsanos, A.G.; Bartzis, J.G. Evaluation of an LES code against a Hydrogen dispersion experiment. CFD Lett. 2012, 4, 225e36. Available online: http://www.akademiabaru.com/doc/CFDLV4_N4_P225_236.pdf (accessed on 1 January 2024).
- Tolias, I.C.; Kanaev, A.A.; Koutsourakis, N.; Glotov, V.Y.; Venetsanos, A.G. Large Eddy Simulation of low Reynolds number turbulent hydrogen jets—Modelling considerations and comparison with detailed experiments. Int. J. Hydrogen Energy 2021, 46, 12384–12398. [Google Scholar] [CrossRef]
- Leissner, J.; Kilian, R.; Kotova, L. Climate for Culture: Assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Herit. Sci. 2015, 3, 38. [Google Scholar] [CrossRef]
- Brimblecombe, P. The Effects of Air Pollution on the Built Environment; Imperial College Press: London, UK, 2003. [Google Scholar]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Harimoto, K. CFD Analysis of Pedestrian Wind Environment in Urban Areas—Case Study in a Suburban City. Build. Environ. 2008, 43, 45–56. [Google Scholar]
- Cook, N.J. The Designer’s Guide to Wind Loading of Building Structures; Butterworths: London, UK, 1985. [Google Scholar]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD simulation of the atmospheric boundary layer: Wall function problems. Atmos. Environ. 2007, 41, 238–252. [Google Scholar] [CrossRef]
- Efthimiou, G.; Barmpas, F.; Tsegas, G.; Moussiopoulos, N. Development of an Algorithm for Prediction of the Wind Speed in Renewable Energy Environments. Fluids 2021, 6, 461. [Google Scholar] [CrossRef]
- Eyring, V.; Köhler, H.W.; van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. 2005, 110, D17305. [Google Scholar] [CrossRef]
- Corbett, J.J.; Koehler, H.W. Updated emissions from ocean shipping. J. Geophys. Res. 2003, 108, D003751. [Google Scholar] [CrossRef]
- Marmer, E.; Langmann, B. Impact of ship emissions on the Mediterranean summertime pollution and climate: A regional model study. Atmos. Environ. 2005, 39, 4659–4669. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. 2003, 108, D002898. [Google Scholar] [CrossRef]
- Westmoreland, D.G.; Bryce, D. Air Quality Management; Taylor & Francis: Abingdon, UK, 2002. [Google Scholar]
- Murena, F. Monitoring and modelling carbon monoxide concentrations in a deep street canyon: Application of a two-box model. Atmos. Pollut. Res. 2012, 3, 311–316. [Google Scholar] [CrossRef]
- Rapkos, N.; Weigelt, A.; Beecken, J.; Ntziachristos, L. Method to identify fuel sulphur content (FSC) violations of ongoing vessels using CFD modelling. Atmos. Environ. 2023, 309, 119912. [Google Scholar] [CrossRef]
- Barth, M.; Boriboonsomsin, K. Real-world carbon dioxide impacts of traffic congestion. Transp. Res. Rec. 2008, 2058, 20. [Google Scholar] [CrossRef]
- Colvile, R.; Hutchinson, E.; Mindell, J.; Warren, R. The transport sector as a source of air pollution. Atmos. Environ. 2001, 35, 1537–1565. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Faiz, A.; Sinha, K.; Walsh, M.; Varma, A. Automotive Air Pollution: Issues and Options for Developing Countries; The World Bank: Washington, DC, USA, 1996. [Google Scholar]
- Krzyzanowski, M.; Kuna-Dibbert, B.; Schneider, J. Health Effects of Transport-Related Air Pollution; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Efthimiou, G.C.; Hertwig, D.; Andronopoulos, S.; Bartzis, J.G.; Coceal, O. A Statistical Model for the Prediction of Wind-Speed Probabilities in the Atmospheric Surface Layer. Bound.-Layer Meteorol. 2017, 163, 179–201. [Google Scholar] [CrossRef]
CO2 | NO | NO2 | NOX | O3 | SO2 | |
---|---|---|---|---|---|---|
Parameter b | 11.1 | 2.9 | 3.07 | 2.78 | 0.47 | 3.43 |
Pollutants | ||||||
---|---|---|---|---|---|---|
HC | NOX | NO2 | NO | CO | CO2 | |
Integral time scale | 26.77 | 15.42 | 18.18 | 14.36 | 34.66 | 15.18 |
Mean | 0.001 | 0.12 | 0.011 | 0.1 | 0.044 | 13.06 |
Fluctuation intensity | 0.97 | 1.35 | 1.77 | 1.35 | 1.12 | 1.1 |
Maximum value | 0.00783 | 0.92 | 0.15 | 0.81 | 0.31 | 55.91 |
Parameter b | 2.63 | 2.26 | 3.05 | 2.26 | 1.81 | 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efthimiou, G. Application of an Empirical Model to Improve Maximum Value Predictions in CFD-RANS: Insights from Four Scientific Domains. Atmosphere 2024, 15, 1124. https://doi.org/10.3390/atmos15091124
Efthimiou G. Application of an Empirical Model to Improve Maximum Value Predictions in CFD-RANS: Insights from Four Scientific Domains. Atmosphere. 2024; 15(9):1124. https://doi.org/10.3390/atmos15091124
Chicago/Turabian StyleEfthimiou, George. 2024. "Application of an Empirical Model to Improve Maximum Value Predictions in CFD-RANS: Insights from Four Scientific Domains" Atmosphere 15, no. 9: 1124. https://doi.org/10.3390/atmos15091124
APA StyleEfthimiou, G. (2024). Application of an Empirical Model to Improve Maximum Value Predictions in CFD-RANS: Insights from Four Scientific Domains. Atmosphere, 15(9), 1124. https://doi.org/10.3390/atmos15091124