Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
Abstract
:1. Introduction
- A systematic comparison of traditional methods, machine learning approaches, and deep learning techniques in WRF track correction is conducted, clarifying the strengths and weaknesses of each method.
- The study emphasizes the importance of BiLSTM and TN in track correction and analyzes the performance of different deep learning frameworks after the integration of ConvLSTM modules.
- This research delves into the performance of WDL, NFM, and xDeepFM in typhoon track correction, significantly enhancing the ability to process complex meteorological data and improving the accuracy and efficiency of predictions. These optimized network architectures demonstrate the immense potential of deep learning techniques in improving typhoon track prediction accuracy.
- By introducing the error decomposition method, error diagnosis and analysis are performed for each correction scheme, enhancing model interpretability and providing valuable insights for further optimization.
2. Data
2.1. Best-Track Data
2.2. Reanalysis Data
3. Methods
3.1. Numerical Model Forecast
3.2. Dataset and Preprocessing Method
3.3. Temporal Normalization and BiLSTM
3.4. Network Architecture
3.4.1. WDL
3.4.2. NFM
3.4.3. xDeepFM
3.5. Performance Evaluation
3.5.1. Evaluation Metrics
3.5.2. Error Decomposition
4. Result
4.1. Analysis of WRF Model Track Forecast Results
4.2. Analysis of Deep Learning-Based Track Correction Results
4.3. Evaluations of Error Decomposition
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, W.; Xie, S.-P.; Primeau, F.; McWilliams, J.C.; Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 2015, 1, e1500014. [Google Scholar] [CrossRef]
- Zhang, C. Madden-julian oscillation. Rev. Geophys. 2005, 43, RG2003. [Google Scholar] [CrossRef]
- Kawai, H.; Hiraishi, T.; Kim, D.-S.; Kang, Y.-K.; Tomita, T. Hindcasting of storm surges in Korea by Typhoon 0314 (Maemi). In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Seoul, Republic of Korea, 19–24 June 2005; p. ISOPE–I-05-304. [Google Scholar]
- Chan, K.T.; Chan, J.C. Sensitivity of the simulation of tropical cyclone size to microphysics schemes. Adv. Atmos. Sci. 2016, 33, 1024–1035. [Google Scholar] [CrossRef]
- Aberson, S.D. Five-day tropical cyclone track forecasts in the North Atlantic basin. Weather Forecast. 1998, 13, 1005–1015. [Google Scholar] [CrossRef]
- He, C.; Zhi, X.; You, Q.; Song, B.; Fraedrich, K. Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman Filter method. Meteorol. Atmos. Phys. 2015, 127, 467–479. [Google Scholar] [CrossRef]
- Kieu, C.; Minh, P.T.; Mai, H.T. An application of the multi-physics ensemble Kalman filter to typhoon forecast. Pure Appl. Geophys. 2014, 171, 1473–1497. [Google Scholar] [CrossRef]
- Song, H.-J.; Huh, S.-H.; Kim, J.-H.; Ho, C.-H.; Park, S.-K. Typhoon track prediction by a support vector machine using data reduction methods. In Proceedings of the Computational Intelligence and Security: International Conference, CIS 2005, Xi’an, China, 15–19 December 2005; Proceedings Part I. pp. 503–511. [Google Scholar]
- Jin, Q.; Fan, X.; Liu, J.; Xue, Z.; Jian, H. Estimating tropical cyclone intensity in the South China Sea using the XGBoost Model and FengYun Satellite images. Atmosphere 2020, 11, 423. [Google Scholar] [CrossRef]
- Xu, K.; Han, Z.; Xu, H.; Bin, L. Rapid prediction model for urban floods based on a light gradient boosting machine approach and hydrological–hydraulic model. Int. J. Disaster Risk Sci. 2023, 14, 79–97. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Chen, R.; Wang, X.; Zhang, W.; Zhu, X.; Li, A.; Yang, C. A hybrid CNN-LSTM model for typhoon formation forecasting. GeoInformatica 2019, 23, 375–396. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, C.; Mu, B.; Zhou, F.; Duan, W. Typhoon intensity forecasting based on LSTM using the rolling forecast method. Algorithms 2021, 14, 83. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Lee, J.; Yoon, S.; Kahou, S.E.; Kashinath, K.; Prabhat, M. Deep-hurricane-tracker: Tracking and forecasting extreme climate events. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1761–1769. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Peng, T.; Zhi, X.; Ji, Y.; Ji, L.; Tian, Y. Prediction skill of extended range 2-m maximum air temperature probabilistic forecasts using machine learning post-processing methods. Atmosphere 2020, 11, 823. [Google Scholar] [CrossRef]
- Ji, Y.; Zhi, X.; Ji, L.; Zhang, Y.; Hao, C.; Peng, T. Deep-learning-based post-processing for probabilistic precipitation forecasting. Front. Earth Sci. 2022, 10, 978041. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292. [Google Scholar]
- Deng, J.; Chen, X.; Jiang, R.; Song, X.; Tsang, I.W. St-norm: Spatial and temporal normalization for multi-variate time series forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 269–278. [Google Scholar]
- Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 7–10. [Google Scholar]
- He, X.; Chua, T.-S. Neural factorization machines for sparse predictive analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 355–364. [Google Scholar]
- Lian, J.; Zhou, X.; Zhang, F.; Chen, Z.; Xie, X.; Sun, G. xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1754–1763. [Google Scholar]
- Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhi, X.; Wu, H.; Zhou, H.; Kong, D.; Zhu, S.; Zhang, Y.; Hao, C. Analyses on the multimodel wind forecasts and error decompositions over North China. Atmosphere 2022, 13, 1652. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ullrich, P.A.; Rastogi, D.; Vahmani, P.; Jones, A.; Grotjahn, R. Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS. Geosci. Model Dev. 2023, 16, 3699–3722. [Google Scholar] [CrossRef]
- Zhang, H.-b.; Zhi, X.-f.; Chen, J.; Wang, Y.-n.; Wang, Y. Study of the modification of multi-model ensemble schemes for tropical cyclone forecasts. J. Trop. Meteorol. 2015, 21, 389. [Google Scholar]
- Khatri, W.D.; Xiefei, Z.; Ling, Z. Interannual and Interdecadal Variations in Tropical Cyclone Activity over the Arabian Sea and the Impacts over Pakistan. In High-Impact Weather Events over the SAARC Region; Springer: Berlin/Heidelberg, Germany, 2014; pp. 129–145. [Google Scholar]
- Xu, G.; Xian, D.; Fournier-Viger, P.; Li, X.; Ye, Y.; Hu, X. AM-ConvGRU: A spatio-temporal model for typhoon path prediction. Neural Comput. Appl. 2022, 34, 5905–5921. [Google Scholar] [CrossRef]
- Moon, J.; Park, J.; Cha, D.-H.; Moon, Y. Five-day track forecast skills of WRF model for the western North Pacific tropical cyclones. Weather Forecast. 2021, 36, 1491–1503. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Dudhia, J. A multi-layer soil temperature model for MM5. In Proceedings of the Preprints, The Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, USA, 22–24 July 1996; pp. 22–24. [Google Scholar]
- Feser, F.; von Storch, H. A dynamical downscaling case study for typhoons in Southeast Asia using a regional climate model. Mon. Weather Rev. 2008, 136, 1806–1815. [Google Scholar] [CrossRef]
- Ji, L.; Zhi, X.; Zhu, S. Probabilistic Forecasts of 1–15-day 500 hPa Geopotential Height over Northern Hemisphere based on Bayesian Model Averaging. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 4263. [Google Scholar]
- Karney, C.F. Algorithms for geodesics. J. Geod. 2013, 87, 43–55. [Google Scholar] [CrossRef]
- Qin, W.; Tang, J.; Lao, S. DeepFR: A trajectory prediction model based on deep feature representation. Inf. Sci. 2022, 604, 226–248. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, K.; Geng, X.; Zou, Z.; Shi, Z. Dual-branched spatio-temporal fusion network for multihorizon tropical cyclone track forecast. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3842–3852. [Google Scholar] [CrossRef]
- Rajini Selvaraj, A.; Gurusamy, T. An optimal model using single-dimensional CAE-IRNN based SPOA for cyclone track prediction. Expert Syst. Appl. 2023, 230, 120437. [Google Scholar] [CrossRef]
- Qiao, B.; Wu, J.; Wang, R.; Hao, Y.; Wang, P.; Han, D.; Wu, G. A parallel feature selection method based on NMI-XGBoost and distance correlation for typhoon trajectory prediction. J. Supercomput. 2024, 80, 11293–11321. [Google Scholar] [CrossRef]
- Rüttgers, M.; Jeon, S.; Lee, S.; You, D. Prediction of typhoon track and intensity using a generative adversarial network with observational and meteorological data. IEEE Access 2022, 10, 48434–48446. [Google Scholar] [CrossRef]
- Lu, P.; Xu, M.; Sun, A.; Wang, Z.; Zheng, Z. Typhoon tracks prediction with convlstm fused reanalysis data. Electronics 2022, 11, 3279. [Google Scholar] [CrossRef]
- Wang, P.; Wang, P.; Wang, C.; Xue, B.; Wang, D. Using a 3D convolutional neural network and gated recurrent unit for tropical cyclone track forecasting. Atmos. Res. 2022, 269, 106053. [Google Scholar] [CrossRef]
- Tan, J.; Chen, S.; Wang, J. Western North Pacific tropical cyclone track forecasts by a machine learning model. Stoch. Environ. Res. Risk Assess. 2021, 35, 1113–1126. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, J.; Zhi, X.; Chen, L.; Zhao, Y.; Liu, X. Impact of model bias correction on a hybrid data assimilation system. J. Meteorol. Res. 2020, 34, 400–412. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, D.; Cha, D.-H.; Im, J. Improved Tropical Cyclone Track Simulation over the Western North Pacific using the WRF Model and a Machine Learning Method. Asia-Pac. J. Atmos. Sci. 2023, 59, 283–296. [Google Scholar] [CrossRef]
- Song, T.; Li, Y.; Meng, F.; Xie, P.; Xu, D. A novel deep learning model by Bigru with attention mechanism for tropical cyclone track prediction in the Northwest Pacific. J. Appl. Meteorol. Climatol. 2022, 61, 3–12. [Google Scholar] [CrossRef]
- Dueben, P.D.; Bauer, P. Challenges and design choices for global weather and climate models based on machine learning. Geosci. Model Dev. 2018, 11, 3999–4009. [Google Scholar] [CrossRef]
ID | Feature Name | Description |
---|---|---|
1–5 | Longitude in the last 24 h | |
6–10 | Longitude in the last 24 h | |
11–15 | Wind speed in the last 24 h | |
16 | Current month | |
17–20 | 1st-order difference in historical latitude | |
25–28 | 1st-order difference in historical wind speed | |
29 | Sum of squares of 1st-order latitude difference | |
30 | Sum of squares of 1st-order longitude difference | |
31 | Square root of feature 29 | |
32 | Square root of feature 30 | |
33–34 | Square root of current latitude and longitude | |
35–38 | Physical acceleration of historical location | |
39–42 | Zonal angle | |
43–46 | Meridional angle | |
47–50 | Angle of historical location | |
51–53 | Angle of historical path | |
54–56 | TC center latitude forecasted by WRF (Integration time of 72 h) after 24 h, 48 h, 72 h | |
57–59 | TC center longitude forecasted by WRF (Integration time of 72 h) after 24 h, 48 h, 72 h |
Method | 72 h | 48 h | 24 h |
---|---|---|---|
WRF | 255.18 | 236.41 | 94.80 |
BiLSTM | 207.67 | 150.01 | 112.86 |
BiLSTM (TN = False) | 428.72 | 156.49 | 126.42 |
Linear | 305.13 | 276.10 | 145.79 |
Linear (TN = False) | 328.61 | 423.81 | 305.58 |
GRU | 244.15 | 212.43 | 182.26 |
GRU (TN = False) | 362.08 | 347.98 | 230.93 |
Transformer | 394.74 | 331.51 | 186.14 |
Transformer (TN = False) | 425.48 | 398.28 | 239.78 |
Method | 72 h | 48 h | 24 h |
---|---|---|---|
WRF | 255.18 | 236.41 | 94.80 |
BiLSTM + ConvGRU + WDL | 186.87 | 174.59 | 81.02 |
BiLSTM + ConvGRU + NFM | 198.22 | 186.38 | 88.45 |
BiLSTM + ConvGRU + xDeepFM | 905.10 | 700.69 | 691.30 |
BiLSTM + ConvLSTM + WDL | 159.23 | 148.25 | 75.31 |
BiLSTM + ConvLSTM + NFM | 1143.48 | 1004.39 | 911.28 |
BiLSTM + ConvLSTM + xDeepFM | 822.03 | 693.49 | 648.87 |
SVM | 667.09 | 331.50 | 323.73 |
XGBoost | 258.86 | 252.44 | 243.87 |
LightGBM | 226.75 | 212.09 | 204.81 |
Kalman Filter | 603.09 | 568.95 | 543.38 |
Evaluation Metrics | MBE | RMSE | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Integration Times | 72 h | 48 h | 24 h | 72 h | 48 h | 24 h | 72 h | 48 h | 24 h |
WRF | −0.8580 | −0.8234 | −0.2791 | 6.5923 | 6.1243 | 2.2350 | 0.8850 | 0.8969 | 0.9857 |
BiLSTM | −0.1757 | −0.2150 | −0.0641 | 3.5686 | 2.6131 | 2.2450 | 0.9663 | 0.9813 | 0.9856 |
BiLSTM (BN = False) | 0.4024 | −0.1068 | −0.4794 | 6.0829 | 2.6533 | 1.8189 | 0.9021 | 0.9807 | 0.9905 |
Linear | −0.9187 | 0.1725 | 0.1134 | 3.7212 | 3.5113 | 1.6634 | 0.9633 | 0.9662 | 0.9921 |
Linear (BN = False) | −0.1158 | −0.2076 | −0.3326 | 4.8270 | 4.8597 | 3.5960 | 0.9383 | 0.9353 | 0.9631 |
GRU | −0.2162 | −0.3655 | −0.3548 | 3.3737 | 2.9878 | 2.0765 | 0.9699 | 0.9755 | 0.9877 |
GRU (BN = False) | 0.2917 | −0.2531 | 0.0416 | 4.8137 | 4.3212 | 2.8944 | 0.9387 | 0.9488 | 0.9761 |
Transformer | −0.9189 | −0.9964 | −0.3940 | 5.0485 | 4.6480 | 2.8076 | 0.9326 | 0.9408 | 0.9775 |
Transformer (BN = False) | −0.5368 | 0.0071 | −0.4009 | 5.4069 | 4.9531 | 3.5501 | 0.9227 | 0.9328 | 0.9641 |
BiLSTM + ConvGRU + WDL | −0.3510 | −0.2597 | 0.0643 | 2.9687 | 2.9477 | 1.1559 | 0.9766 | 0.9762 | 0.9961 |
BiLSTM + ConvGRU + NFM | 0.0387 | 0.0028 | −0.1931 | 3.3989 | 3.1412 | 1.6646 | 0.9694 | 0.9729 | 0.9921 |
BiLSTM + ConvGRU + xDeepFM | −6.4661 | 2.0634 | 1.3869 | 11.4131 | 9.0480 | 8.9276 | 0.6555 | 0.7758 | 0.7731 |
BiLSTM + ConvLSTM + WDL | −0.1654 | −0.2661 | 0.0454 | 2.7000 | 2.7549 | 1.1039 | 0.9807 | 0.9792 | 0.9965 |
BiLSTM + ConvLSTM + NFM | −10.2760 | −2.5333 | −5.4385 | 12.8171 | 10.2671 | 9.7558 | 0.5656 | 0.7113 | 0.7290 |
BiLSTM + ConvLSTM + xDeepFM | 4.9756 | 1.8617 | 1.9114 | 10.9262 | 8.6066 | 7.6774 | 0.6843 | 0.7971 | 0.8322 |
SVM | −0.1267 | −0.3982 | −0.3485 | 7.4554 | 4.3049 | 4.3001 | 0.8571 | 0.9494 | 0.9472 |
XGBoost | −0.5818 | −0.4998 | −0.3843 | 4.0085 | 4.0167 | 3.9538 | 0.9587 | 0.9560 | 0.9554 |
LightGBM | −0.4862 | −0.4172 | −0.3555 | 3.7029 | 3.5201 | 3.5342 | 0.9647 | 0.9662 | 0.9643 |
Kalman Filter | −0.2304 | −0.1806 | −0.1616 | 8.2721 | 7.7675 | 7.3244 | 0.8241 | 0.8355 | 0.8470 |
Evaluation Metrics | MBE | RMSE | R2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Integration Times | 72 h | 48 h | 24 h | 72 h | 48 h | 24 h | 72 h | 48 h | 24 h |
WRF | −0.5869 | −0.0547 | 0.0204 | 2.1927 | 2.3586 | 1.4154 | 0.9571 | 0.9483 | 0.9804 |
BiLSTM | −0.4274 | −0.1121 | −0.1045 | 1.8803 | 0.9956 | 1.0337 | 0.9684 | 0.9908 | 0.9895 |
BiLSTM (BN = False) | −0.8436 | −0.0706 | −0.0435 | 3.4579 | 1.0808 | 0.9270 | 0.8933 | 0.9891 | 0.9916 |
Linear | −0.4207 | −0.2008 | −0.2043 | 2.0460 | 1.7598 | 1.3299 | 0.9626 | 0.9713 | 0.9827 |
Linear (BN = False) | −0.6643 | −0.4310 | −0.0942 | 2.4424 | 2.6394 | 1.7988 | 0.9468 | 0.9355 | 0.9684 |
GRU | −0.6968 | −0.3578 | −0.4574 | 1.9796 | 1.4512 | 1.5308 | 0.9650 | 0.9805 | 0.9771 |
GRU (BN = False) | −0.6137 | −0.8096 | −0.5025 | 1.9777 | 2.4024 | 1.4817 | 0.9651 | 0.9466 | 0.9786 |
Transformer | −1.3834 | −0.4780 | −0.3452 | 3.3038 | 2.6558 | 1.7801 | 0.9026 | 0.9347 | 0.9691 |
Transformer (BN = False) | −0.9524 | 0.0587 | −0.2639 | 3.1170 | 3.3044 | 1.7611 | 0.9133 | 0.8989 | 0.9698 |
BiLSTM + ConvGRU + WDL | −0.4735 | −0.0644 | −0.1287 | 1.4486 | 1.2587 | 0.9061 | 0.9812 | 0.9853 | 0.9920 |
BiLSTM + ConvGRU + NFM | −0.2782 | −0.1518 | −0.1182 | 1.5519 | 1.3800 | 1.0189 | 0.9785 | 0.9823 | 0.9898 |
BiLSTM + ConvGRU + xDeepFM | −1.1432 | 1.3622 | 0.4167 | 4.2574 | 2.9565 | 3.4487 | 0.8383 | 0.9191 | 0.8841 |
BiLSTM + ConvLSTM + WDL | −0.3333 | −0.1077 | −0.0585 | 1.2574 | 1.0809 | 0.8662 | 0.9859 | 0.9891 | 0.9926 |
BiLSTM + ConvLSTM + NFM | −2.2929 | −3.0105 | 0.3350 | 4.5378 | 6.9031 | 4.8951 | 0.8164 | 0.5591 | 0.7666 |
BiLSTM + ConvLSTM + xDeepFM | 1.9433 | 0.6772 | 0.3962 | 3.9412 | 3.0528 | 2.9718 | 0.8615 | 0.9137 | 0.9140 |
SVM | −1.3585 | −0.5819 | −0.5307 | 4.9184 | 2.8527 | 2.8442 | 0.7914 | 0.9248 | 0.9213 |
XGBoost | −0.7504 | −0.6587 | −0.5567 | 2.8311 | 2.6730 | 2.5929 | 0.9309 | 0.9340 | 0.9346 |
LightGBM | −0.6070 | −0.5169 | −0.4121 | 2.6081 | 2.3594 | 2.3057 | 0.9413 | 0.9485 | 0.9483 |
Kalman Filter | −0.0386 | −0.0301 | −0.0155 | 4.5448 | 4.3618 | 4.2370 | 0.8219 | 0.8242 | 0.8255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, C.; Wang, Z.; Tian, Y.; Han, Y.; Wang, K.; Li, Q.; Zuo, J. Calibration of Typhoon Track Forecasts Based on Deep Learning Methods. Atmosphere 2024, 15, 1125. https://doi.org/10.3390/atmos15091125
Tao C, Wang Z, Tian Y, Han Y, Wang K, Li Q, Zuo J. Calibration of Typhoon Track Forecasts Based on Deep Learning Methods. Atmosphere. 2024; 15(9):1125. https://doi.org/10.3390/atmos15091125
Chicago/Turabian StyleTao, Chengchen, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li, and Juncheng Zuo. 2024. "Calibration of Typhoon Track Forecasts Based on Deep Learning Methods" Atmosphere 15, no. 9: 1125. https://doi.org/10.3390/atmos15091125
APA StyleTao, C., Wang, Z., Tian, Y., Han, Y., Wang, K., Li, Q., & Zuo, J. (2024). Calibration of Typhoon Track Forecasts Based on Deep Learning Methods. Atmosphere, 15(9), 1125. https://doi.org/10.3390/atmos15091125