Effects of Stumping and Meteorological Factors on Sap Flow Characteristics of Haloxylon ammodendron in Ulan Buh Desert, Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Sampling
2.3. Stem Sap Flow Measurement
2.4. Meteorological Factors Measurements
2.5. Statistical Analysis
3. Results
3.1. Variation in Sap Flow Velocity with Stumping Treatment
3.2. Frequency Distribution of the Sap Flow Velocity
3.3. Relationships Between Sap Flow Velocity and Meteorological Factors
3.4. Influence of Meteorological Factors on Sap Flow Velocity
3.5. Main Factors Affecting Sap Flow Velocity
4. Discussion
4.1. Diurnal Variation in Sap Flow Velocity
4.2. Influence of Different Treatments on Sap Flow
4.3. The Relationship Between Sap Flow and Meteorological Factors
4.4. Caveats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heshmati, G.A.; Squires, V.R. Combating Desertification in Asia, Africa and the Middle East. In Successful Biological Methods for Combating Desertification at Degraded Areas of China; Springer: Dordrecht, The Netherlands, 2013; pp. 49–71. [Google Scholar]
- Kang, J.J.; Duan, J.J.; Wang, S.M.; Zhao, M.; Yang, Z.H. Na compound fertilizer promotes growth and enhances drought resistance of the succulent xerophyte Haloxylon ammodendron. Soil Sci. Plant Nutr. 2013, 59, 289–299. [Google Scholar] [CrossRef]
- Ren, C.; Yu, T.; Qu, G.H.; Wang, S.; Wang, Z.; Abudoukeyumu, M.; Zhang, H.; Ma, L.; He, X.L.; Ma, H. Haloxylon ammodendron (Amaranthaceae) fruit development delay caused by post-flowering non-inductive photoperiod. J. Arid Land. 2017, 9, 408–418. [Google Scholar] [CrossRef]
- Chang, Z.F.; Zhu, S.J.; Duan, X.F.; Zhao, P.; Zhang, J.H.; Ding, A.Q. Health sequence analysis of a plant community in the sand-accumulation belt along the oasis fringe in Minqin, China. Acta Eco. Sin. 2019, 39, 302–308. (In Chinese) [Google Scholar]
- Daley, M.J.; Phillips, N.G. Interspecific variation in night time transpiration and stomatal conductance in a mixed NewEngland deciduous forest. Tree Physiol. 2006, 26, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; She, C.Y.; Bai, Z.Q.; Li, Q.; Liu, D.; Han, Y.L. Sap flow and transpiring water-consumption of pinus sibirica in different diameter classes. Acta Bot. Boreali-Occident. Sin. 2016, 36, 390–397. [Google Scholar]
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Small, E.E.; Mcconnell, J.R. Comparison of soil moisture and meteorological controls on pine and spruce transpiration. Ecohydrology 2010, 1, 205–214. [Google Scholar] [CrossRef]
- Pataki, D.E.; Oren, R.; Smith, W.K. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought. Ecology 2000, 81, 2557–2566. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1988, 3, 309–320. [Google Scholar] [CrossRef]
- Ping, L.U.; Urban, L.; Ping, Z. Granier’s thermal dissipation probre (TDP) method for measuring sap flow in trees: Theory and practice. Acta Bot. Sin. 2004, 46, 631–646. [Google Scholar]
- Nadezhdina, N.; Steppe, K.; Pauw, D.J.D.; Bequet, R.; Cermak, J.; Ceulemans, R. Stem-mediated hydraulic redistribution in large roots on opposing sides of a Douglas-fir tree following localized irrigation. New Phytol. 2010, 184, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Bond, W.J.; Midgley, J.J. Ecology of sprouting in woody plants: The persistence niche. Tree 2001, 161, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Maschinski, J.; Whitham, T.G. The continuum of plant responses to herbivory: The influences of plant association, nutrient availability and timing. Am. Nat. 1989, 134, 1–9. [Google Scholar] [CrossRef]
- Huang, Y.R.; Li, Y.H.; Xin, Z.M.; Ma, Y.B.; Zhao, N.Q.; Yang, Z.; Liu, Y.N.; Duan, R.B.; Wu, J.; Dong, X. Effects of stumping on sap flow of artificial Haloxylon ammodendron and its relationship with meteorological factors. J. Cent. South Univ. For. Technol. 2021, 41, 129–139. (In Chinese) [Google Scholar]
- Ji, X.M.; Ning, H.S.; Liang, J.Y.; Luo, Q.H.; Lei, C.Y. Experiment research of Haloxylon ammodendron cutting rejuvenation at typical desert and oasis transition zone. J. Cent. South Univ. For. Technol. 2016, 36, 37–43. (In Chinese) [Google Scholar]
- Sun, P.F.; Zhou, H.F.; Li, Y.; Li, M.L. Trunk sap flow and water consumption of Haloxylon ammodendron growing in the Gurbanhhut Desert. Acta Ecol. Sin. 2010, 30, 6901–6909. (In Chinese) [Google Scholar]
- Li, H.; Hu, S.J.; Zhu, H.; Li, X.Q. Characterization of stem sap flow Haloxylon ammodendron by using thermal dissipation technology. Acta Ecol. Sin. 2017, 37, 7187–7196. (In Chinese) [Google Scholar]
- Huang, Y.R.; Xin, Z.M.; Li, Y.H.; Ma, Y.B.; Dong, X.; Luo, F.M.; Li, X.L.; Duan, R.B. Seasonal variation of the stem sap flow of artificial Haloxylon ammodendron (C.A.Mey.) bunge and its relationship with meteorological factors in Ulan Buh Desert. J. Nanjing For. Univ. 2020, 44, 131–139. (In Chinese) [Google Scholar]
- Zhang, X.Y.; Chu, J.M.; Meng, P.; Yao, Z.W.; Wang, H.S.; Li, D.L.; Jiang, S.X. The effect of environmental factors on stem sap flow characteristics of Haloxylon ammodendron (C.A.Mey.) bunge in Minqin oasis-desert. Acta Ecol. Sin. 2017, 37, 1525–1536. (In Chinese) [Google Scholar]
- Du, S.; Wang, Y.; Kume, T.; Zhang, J.; Otsuki, K.; Yamanaka, N.; Liu, G. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agric. For. Meteorol. 2011, 151, 1–10. [Google Scholar] [CrossRef]
- Qiang, Y.; Xu, X.; Zhang, J. Study on the Dynamics of Stem Sap Flow in Minqin Wind and Sand Control Haloxylon ammodendron Forest, China. Sustainability 2023, 15, 609. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, J.; Xu, X.; Liu, H.; Duan, X. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China. J. Arid Land. 2023, 15, 842–857. [Google Scholar] [CrossRef]
- Liu, Y.L.; Bai, J.H.; Xiong, W.; Han, Y.Q.; Lian, H.L.; Guo, H.; Xin, Z.M.; Liu, X.J.; Liu, H.Y. The characteristics of branch nocturnal sap flow and its environmental driving mechanism of Haloxylon ammodendron artificial shrub in the Ulan Buh Desert. J. Desert Res. 2022, 42, 195–203. (In Chinese) [Google Scholar]
- Qiang, Y.Q.; Xu, X.Y.; Zhang, J.C.; Liu, H.J.; Guo, S.J.; Duan, X.F. Characteristics of stem sap flow of Haloxylon ammodendron and its response to environmental factors in Qingtu Lake. Minqin Arid Zone Res. 2022, 39, 1143–1154. (In Chinese) [Google Scholar]
- Yan, K.; Yang, G.; He, X.L.; Li, F.D.; Liu, S.H.; Ren, F.T. Water sources and transport for Haloxylon ammodendron in southern margin of Junggar Basin. J. Arid Land Res. Environ. 2020, 34, 201–208. (In Chinese) [Google Scholar]
- Zhou, D.; Si, J.; He, X.; Jia, B.; Zhao, C.; Wang, C.; Qin, J.; Zhu, X. The Process of Soil Desiccation under Haloxylon ammodendron Plantations: A Case Study of the Alxa Legue Desert, China. Plants 2022, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Y.; Wang, H.T.; Lin, P. Comparison of water consumption of some afforestation species in Beijing area. J. Beijing For. Univ. 2003, 25, 1–7. (In Chinese) [Google Scholar]
- Steinberg, S.L.; McFarland, M.J.; Worthington, J.W. Comparison of trunk and branch sap flow with canopy transpiration in Pecan. J. Exp. Bot. 1990, 41, 653–659. [Google Scholar] [CrossRef]
- Poyatos, R.; Granda, V.; Flo, V.; Adams, M.A.; Adorján, B.; Aguadé, D.; Aidar, M.P.; Allen, S.; Alvarado-Barrientos, M.S.; Anderson-Teixeira, K.J.; et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data 2021, 13, 2607–2649. [Google Scholar] [CrossRef]
- Gong, X.Y.; Chen, Q.; Lin, S.; Klaus, H.B. Tradeoffs between nitrogen-and water-use efficiency in dominant species of the semiarid stepper of Inner Mongolia. Plant Soil 2011, 340, 227–238. [Google Scholar] [CrossRef]
- Peng, X.P.; Fan, J.; Wang, Q.J.; Warrington, D. Discrepancy of sap flow in Salix matsudana grown under different soil textures in the water-wind erosion crisscross region on the Loess Plateau. Plant Soil 2015, 390, 383–399. [Google Scholar] [CrossRef]
- Link, R.M.; Fuchs, S.; Aguilar, D.A.; Leuschner, C.; Ugalde, M.C.; Otarola, J.C.V.; Schuldt, B. Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agric. For. Meteorol. 2020, 287, 107913. [Google Scholar] [CrossRef]
- Bárek, V.; Kováčová, M.; Kišš, V.; Paulen, O. Water Regime Monitoring of the Royal Walnut (Juglans regia L.) Using Sap Flow and Dendrometric Measurements. Plants 2021, 10, 2354. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.S.; Goldstein, G.; Meinzer, F.C.; Fownes, J.; Mueller-Dombois, D. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiol. 2000, 20, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, W.; Jin, B. The response of sap flow in desert shrubs to environmental variables in an arid region of China. Ecohydrology 2011, 4, 448–457. [Google Scholar] [CrossRef]
- Wieser, G.; Grams, T.E.E.; Matyssek, R.; Walter, O.; Gruber, A. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps. Tree Physiol. 2015, 35, 279–288. [Google Scholar] [CrossRef]
- Tian, Q.Y.; He, Z.B.; Xiao, S.C.; Du, J.; Peng, X.M.; Chen, L.F.; Lin, P.F.; Zhu, X.; Ding, A.J. Growing season stem water status assessment of qinghai spruce through the sap flow and stem radial variations in the Qilian Mountains of China. Forests 2018, 9, 2. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Thompson, T.L. Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods. Agric. For. Meteorol. 2003, 116, 73–89. [Google Scholar] [CrossRef]
- Sofo, A.; Dichio, B.; Montanaro, G.; Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 2009, 47, 602–608. [Google Scholar] [CrossRef]
- Balachowski, J.A.; Bristiel, P.M.; Volaire, F.A. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses. Ann. Bot. 2016, 118, 357–368. [Google Scholar] [CrossRef]
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Grant, O.M.; Tronina, Ł.; Garcíaplazaola, J.I.; Esteban, R.; Pereira, J.S.; Chaves, M.M. Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. Funct. Plant Biol. 2014, 42, 219–228. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.J.; Oberbauer, S.F.; Clark, D.B. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant Cell Environ. 2004, 27, 551–567. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.C.; Tian, F.Q.; Guan, H.D.; Lin, H. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agric. For. Meteorol. 2017, 240, 46–57. [Google Scholar] [CrossRef]
- Hao, S.R.; Pei, Z.Y.; Duan, G.D.; Qiao, J.W.; Pang, G.H.; Wang, K.; Wu, Y.S. Relationships between environmental factors and Salix psammophila’s sap flow at different time scales. J. Arid Land Res. Environ. 2020, 34, 152–158. (In Chinese) [Google Scholar]
- Maierdang, K.; Müt, H.; Gulibiya, W.; Abuduaini, A. Diel variation of Populus euphratica sap flow and its correlation with meteorological factors. J. Glaciol. Geocryol. 2018, 40, 166–175. (In Chinese) [Google Scholar]
Year | Treatments | Ground Diameter (cm) | Plant Height (m) | Crown Diameter (m) | New Branch Length (cm) |
---|---|---|---|---|---|
2021 no stumping | 0% | 11.75 | 2.91 | 2.65 | 7.13 |
25% | 7.25 | 2.39 | 2.36 | 5.37 | |
50% | 12.25 | 2.69 | 2.38 | 6.14 | |
CK | 10.83 | 3.10 | 3.35 | 8.24 | |
2022 after stumping | 0% | - | 0.98 | 1.07 | 24.41 |
25% | - | 1.24 | 1.51 | 14.17 | |
50% | - | 1.68 | 2.63 | 9.36 | |
CK | - | 3.12 | 3.35 | 5.95 |
Treatments | Entry Factor | R2 | Regressions Equation | p | |
---|---|---|---|---|---|
2021 before stumping | CK | Rn | 0.912 | Y = 0.434 + 0.011Rn | <0.01 |
Rn, RH, VPD, Ta | 0.920 | Y = 0.807 + 0.011Rn − 0.020RH − 0.662VPD + 0.081Ta | <0.01 | ||
50% | Rn | 0.833 | Y = 0.426 + 0.008Rn | <0.01 | |
Rn, Ta | 0.879 | Y = −1.090 + 0.006 Rn + 0.092Ta | <0.01 | ||
25% | Rn | 0.500 | Y = 1.034 + 0.006Rn | <0.01 | |
Rn, Ta, VPD | 0.625 | Y = −3.852 + 0.005Rn + 0.068Ta − 2.569VPD | <0.01 | ||
0% | Rn | 0.759 | Y = 0.234 + 0.002Rn | <0.01 | |
Rn, Ta, VPD | 0.808 | Y = −0.079 + 0.01Rn + 0.171VPD + 0.203VPD | <0.01 | ||
2022 after stumping | CK | Rn | 0.857 | Y = 0.370 + 0.007Rn | <0.01 |
Rn, VPD, Ta, RH | 0.940 | Y = −1.223 + 0.005Rn + 6.136VPD + 0.477Ta − 0.010RH | <0.01 | ||
50% | Rn | 0.763 | Y = 0.959 + 0.011R | <0.01 | |
Rn, VPD, T, RH | 0.912 | Y = −3.854 + 0.006 Rn + 12.247VPD + 0.886Ta − 0.011RH | <0.01 | ||
25% | Rn | 0.420 | Y = 0.717 + 0.004 Rn | <0.01 | |
Rn, RH, VPD, Ta | 0.540 | Y = 5.784 + 0.004Rn − 0.049RH − 7.933VPD + 0.652Ta | <0.01 | ||
0% | VPD | 0.425 | Y = −0.465 + 0.515VPD | <0.01 | |
VPD, Ta | 0.565 | Y = −0.684 + 3.257VPD + 0.261T | <0.01 |
Treatments | Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|---|
2021 before stumping | Corrected Model | 1364.74 | 19 | 71.83 | 8.66 | <0.01 |
Intercept | 21,953.50 | 1 | 21,953.50 | 2648.10 | <0.01 | |
Morphological factor | 553.06 | 3 | 184.35 | 22.24 | <0.01 | |
Meteorological factor | 350.56 | 4 | 87.64 | 10.57 | <0.01 | |
Morphological factor × Meteorological factor | 461.11 | 12 | 38.43 | 4.64 | <0.01 | |
2022 after stumping | Corrected Model | 4114.04 | 19 | 216.53 | 33.98 | <0.01 |
Intercept | 11,733.50 | 1 | 11,733.50 | 1841.32 | <0.01 | |
Morphological factor | 3572.73 | 3 | 1190.91 | 186.89 | <0.01 | |
Meteorological factor | 292.77 | 4 | 73.19 | 11.49 | <0.01 | |
Morphological factor × Meteorological factor | 248.54 | 12 | 20.71 | 3.25 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Huang, Y.; Zhang, J.; Hao, X.; Xin, Z.; Cui, J.; Dong, X.; Wang, H.; Han, C.; Zhu, J.; et al. Effects of Stumping and Meteorological Factors on Sap Flow Characteristics of Haloxylon ammodendron in Ulan Buh Desert, Northwestern China. Atmosphere 2024, 15, 1286. https://doi.org/10.3390/atmos15111286
Ma Y, Huang Y, Zhang J, Hao X, Xin Z, Cui J, Dong X, Wang H, Han C, Zhu J, et al. Effects of Stumping and Meteorological Factors on Sap Flow Characteristics of Haloxylon ammodendron in Ulan Buh Desert, Northwestern China. Atmosphere. 2024; 15(11):1286. https://doi.org/10.3390/atmos15111286
Chicago/Turabian StyleMa, Yingbin, Yaru Huang, Jingbo Zhang, Xuting Hao, Zhiming Xin, Jian Cui, Xue Dong, Haoyi Wang, Chunxia Han, Jinlei Zhu, and et al. 2024. "Effects of Stumping and Meteorological Factors on Sap Flow Characteristics of Haloxylon ammodendron in Ulan Buh Desert, Northwestern China" Atmosphere 15, no. 11: 1286. https://doi.org/10.3390/atmos15111286
APA StyleMa, Y., Huang, Y., Zhang, J., Hao, X., Xin, Z., Cui, J., Dong, X., Wang, H., Han, C., Zhu, J., & Lu, Q. (2024). Effects of Stumping and Meteorological Factors on Sap Flow Characteristics of Haloxylon ammodendron in Ulan Buh Desert, Northwestern China. Atmosphere, 15(11), 1286. https://doi.org/10.3390/atmos15111286